Clay County
 COUNTY ROADWAY

 Moving Toward ZERO Deaths

March 2023

This page intentionally left blank

Executive Summary

This Safety Plan for Clay County was prepared as part of the County Road Safety Plan update process (CRSP 2). It aligns with the state's Strategic Highway Safety Plan (SHSP) and supports the state's Towards Zero Deaths (TZD) program. This safety plan was developed in a collaborative effort with county safety stakeholders to reduce severe crashes or those involving fatalities and serious injuries. This plan process utilizes a data-driven approach, documents atrisk locations, identifies effective and proven safety improvement strategies, and recommends safety projects to better position the county to compete for available federal safety funds in the Highway Safety Improvement Program (HSIP).

The first round of the County Roadway Safety Plans (CRSP 1) began in 2009 and was completed in 2014. Increased investments in local safety projects and implementation of these low-cost and high-impact safety strategies have contributed to a 22 percent reduction in the number of fatal crashes on the county system while at the same period the state system showed a 3 percent reduction in fatal crashes.

To date, nearly 85 percent of Minnesota counties have participated in HSIP with more than $\$ 86$ million in safety improvements deployed across the county system. Since the completion of Clay County's initial safety plan, the County secured approximately $\$ 0.72$ million in HSIP funding to support the implementation of 9 safety projects at roadway segments and intersections such as shoulder improvements, striping, shoulder rumble strips, and lighting to improve the visibility of intersections.

This Clay County Safety Plan includes:

- Description of Safety Focus Areas (Section 3.1)
- Identification of a short list of high-priority low-cost strategies (Section 3.3)
- Candidate location for highway safety funds, which are considered at-risk location (Appendix D)
- Development of $\$ 4.7$ million recommended safety projects - these projects are actual application for HSIP funds (Appendix F)

This information is provided to Clay County to reduce the number of severe crashes on their highway system and it is understood that the final decision to implement any of the recommended projects resides with the Clay County Engineer. The County is encouraged to coordinate with MnDOT to pursue a partnership that identifies a path toward implementation for projects that involve State trunk highways and/or right-of-way. This Plan does NOT set requirements or mandates, is NOT a standard and is neither intended to be, NOR does it establish, a legal standard of care.

In an effort to help reduce the potential exposure to claims of negligence associated with motor vehicle crashes on Clay County's highway system, three key points should be considered:

1. Federal law (23 U.S.C. Section 409) established that information generated as part of the statewide safety planning process is considered privileged and unavailable to the public. The privileged status includes crash data, where value/detail has been added by analysts
during the safety planning process (for example; computation of crash rates, disaggregation of crashes by type or severity, documentation of contributing factors), the lists of at-risk locations, and information supporting the development and evaluation of potential safety projects. The federal law and the privileged status of the safety information was upheld by the U. S. Supreme Court in the case of Pierce County (Washington) v. Guillen.
2. Minnesota tort law provides for discretionary immunity for decisions made by agency officials when there is documentation of the decision and evidence of consideration of social, economic, and political issues. To help establish immunity for decisions relative to moving forward with development of recommended safety improvement projects, the County Engineer is encouraged to prepare a memorandum/plan of action for the County Board. This document would identify the projects selected for implementation and those they choose to dismiss and why.
3. Minnesota tort law also provides for official immunity for decisions made by agency staff where there is written documentation of the thought process supporting project development and implementation.

As with any transportation plan, the expected shelf life of this document is not infinite. The distribution of crashes can change over time as well as roadway and traffic conditions that can contribute to the occurrence of crashes. This Plan contains $\$ 4.7$ million of potential safety projects, which could provide Clay County with a sufficient backlog of projects for approximately 5 years. As a result, Clay County is encouraged to consider periodically updating this Safety Plan to continue to reduce fatalities and serious injuries on Minnesota roadways.

Contents

Executive Summary 1
Acronyms and Abbreviations vii
1.0 Introduction 1-1
1.1 Background 1-1
1.2 National Context 1-4
1.3 State Context 1-6
1.4 Clay County - Local System Description 1-6
2.0 Approach 2-1
2.1 Proactive Systemic Safety Analysis 2-1
2.2 Safety Workshop. 2-3
3.0 Crash Analysis 3-1
3.1 Safety Focus Areas 3-1
3.2 Roadway Facilities. 3-9
3.3 Safety Strategies and Countermeasures. 3-15
4.0 System Evaluation 4-1
4.1 Risk Factor Identification 4-2
4.2 Prioritization of Candidate Locations. 4-9
5.0 Beyond Infrastructure - County Highway Collaboration to Improve Local Road Safety 5-1
5.1 County Highway Engineering Coordination with Minnesota Toward Zero Deaths Program 5-2
5.2 Collaborations to Strengthen Local Road Safety 5-3
6.0 Safety Project Development and Recommended Projects 6-1
6.1 Safety Project Development Technical Process 6-1
6.2 Rural Segments 6-2
6.3 Rural Curves 6-2
6.4 Rural Intersections 6-9
6.5 Urban Segments. 6-9
6.6 Urban Intersections - Vehicle Related Crashes. 6-15
6.7 Urban Intersections - Pedestrian/Bike Related Crashes. 6-15
6.8 Recommended Safety Project Overview 6-21
7.0 References 7-1

Appendixes

A	List of Analyzed Locations
B	Meeting Minutes/Summaries
C	Workshop Material
D	List of Prioritized Locations
E	Regional TZD Coordinator Contact
F	List of Recommended Projects
G	Recommended Project Maps
H	HSIP Submission Forms

Tables

Table 1-1. County Implemented Safety Projects 1-3
Table 1-2. Clay County Highway Safety Improvement Program Overview 1-9
Table 3-1. Minnesota Crash Focus Areas (2016-2020) 3-5
Table 3-2. Clay County Crash Focus Areas (2016-2020) 3-7
Table 4-1. Rural Segment Risk Factors 4-6
Table 4-2. Curves Risk Factors 4-6
Table 4-3. Rural Intersection Risk Factors 4-7
Table 4-4. Urban Segment Risk Factors 4-7
Table 4-5. Urban Intersection Risk Factors/Vehicle Related Crashes 4-8
Table 4-6. Urban Intersection Risk Factors/Pedestrian/Bike Related Crashes 4-8
Table 4-7. Rural Segment Prioritization - Example Table 4-11
Table 4-8. Rural Curve Prioritization - Example Table 4-12
Table 4-9. Rural Intersection Prioritization - Example Table 4-13
Table 4-10. Urban Segment Prioritization - Example Table 4-14
Table 4-11. Urban Intersection Prioritization Vehicle Related - Example Table 4-15
Table 4-12. Urban Intersection Prioritization Pedestrian/Bike Related - Example Table 4-16
Table 6-1. Summary of Clay County Recommended Safety Projects 6-22
Figures
Figure 1-1. Fatal Crashes along Minnesota Roads 1-4
Figure 1-2. Trend in Traffic Fatalities in United States and Minnesota 1-5
Figure 1-3. Clay County Map 1-8
Figure 2-1. Clay County Safety Workshop 2-3
Figure 3-1. Focus Area Priorities 3-2
Figure 3-2. Minnesota's Eight Area Transportation Partnerships 3-3
Figure 3-3. Minnesota Statewide Crash Tree - County Rural System (2016-2020) 3-11
Figure 3-4. Clay County Crash Tree - County Rural System (2016-2020) 3-13
Figure 3-5. Safety Edge 3-17
Figure 3-6. Shoulder Paving 3-17
Figure 3-7. Chevrons 3-17
Figure 3-8. Street Light. 3-17
Figure 3-9. LED Stop Sign 3-17
Figure 3-10. Bike Lane/Boulevard 3-17
Figure 3-11. Vehicle Speed Feedback Sign 3-18
Figure 3-12. Median Refuge Island 3-18
Figure 3-13. Roundabout 3-18
Figure 3-14. Rectangular Rapid Flash Beacon (RRFB) 3-18
Figure 4-1. Systemic Risk Factor Rural Segment Access Density 4-2
Figure 4-2. Systemic Risk Factor Urban Segment Access Density 4-3
Figure 4-3. Systemic Risk Factor Rural Intersection Total Entering Traffic Volume 4-3
Figure 4-4. Systemic Risk Factor Urban Intersection Vehicle Related Total Entering Vehicles 4-4
Figure 4-5. Rural Intersection Crash Density Distribution Versus Systemic Risk Rating 4-5
Figure 4-6. Rural Curve Severe Crash Density Distribution Versus Systemic Risk Rating 4-5
Figure 5-1. Crash Causation Factors 5-1
Figure 6-1. Rural Segment Safety Project Decision Tree 6-5
Figure 6-2. Rural Curve Safety Project Decision Tree 6-7
Figure 6-3. Rural Intersection Safety Project Decision Tree 6-11
Figure 6-4. Urban Segment Safety Project Decision Tree 6-13
Figure 6-5. Urban Intersections - Vehicle Related Safety Project Decision Tree 6-17
Figure 6-6. Urban Intersections - Pedestrian/Bike-Related Safety Project Decision Tree 6-19
Figure 6-7. Sample Highway Safety Improvement Program Submission Form 6-23

This page intentionally left blank

Acronyms and Abbreviations

AADT	annual average daily traffic
AASHTO	American Association of State Highway and Transportation Officials
ADT	average daily traffic
ATP	Area Transportation Partnership
CR	County Road
CRSP	County Roadway Safety Plan
CSAH	county state aid highway
EV	entering vehicles
FAST	Fixing America's Surface Transportation Act
FHWA	U.S. Federal Highway Administration
HSIP	Highway Safety Improvement Program
LED	light-emitting diode
MAP-21	Moving Ahead for Progress in the 21st Century Act
MnDOT	Minnesota Department of Transportation
mph	miles per hour
MVMT	million vehicle miles traveled
NCHRP	National Cooperative Highway Research Program NV
no value	
RE + SSSD	rear end and sideswipe same direction
RRFB	rectangular rapid flash beacon
SAFETEA-LU	Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for
Users	Strategic Highway Safety Plan
TZD	Toward Zero Deaths
vpd	vehicle(s) per day

This page intentionally left blank

This CRSP 2 was developed in collaboration with FHWA, MnDOT Office of State Aid and Office of Traffic Engineering.

This page intentionally left blank

1.0 Introduction

County safety stakeholders and the Minnesota Department of Transportation (MnDOT) have collaborated to reduce fatalities and serious injuries on local roadways to achieve Minnesota's vision of zero roadway fatalities. The first major initiative was the development of County Roadway Safety Plans (known as CRSP 1), which began in 2009 and was completed in 2014 (CH2M HILL and SRF Consulting Group, Inc., 2014). Counties began implementing the CRSP 1 recommended safety projects in 2013 and have made significant progress.
MnDOT Highway Safety Improvement Program (HSIP) managers indicated local agency participation in the HSIP program has specifically increased due to:

- CRSP 1 development and resulting safety projects
- Dedicated safety funding for safety strategies
- Technical assistance

Emphasis on local roadways and CRSP as a planning and implementation tool, have become integral to the statewide safety program. In 2016, County engineers and MnDOT initiated an update of the CRSPs (known as CRSP 2) to further reduce fatalities and serious injuries on Minnesota local roadways. CRSP 2 is more collaborative, utilizes the most current safety data, and provides a refreshed list of HSIP eligible safety projects. This CRSP 2 document outlines results of a comprehensive safety analysis that used crash data and roadway characteristics to identify the most crucial County transportation safety planning needs and associated safety treatments to reduce fatal and serious injury related crashes.

As part of this CRSP 2 development, the following tasks were completed.

- Review of all county road segments, curves, and intersections
- Data-driven review of crashes on county roadways
- Summary of safety focus areas and priority crash types
- List of recommended high priority safety strategies
- Prioritized list of locations that are most at-risk for severe crashes
- Prioritized list of recommended safety projects - specific strategies at specific locations

1.1 Background

Efforts to reduce statewide traffic fatalities and achieve Minnesota's long-term zero fatality vision requires increasing local agency involvement in the State's safety program. Local agencies are responsible for more than 90 percent of the State's roadway miles and approximately 60 percent of severe crashes (those involving a fatality or serious injury) occur on local Minnesota roads. As a result, the Minnesota's 2007 Strategic Highway Safety Plan (SHSP) (MnDOT, 2007) and the current 2020 SHSP identified the need to fully engage local road authorities in statewide highway safety program.

MnDOT, the U.S. Federal Highway Administration (FHWA), and Minnesota's county engineers partnered to establish the CRSP 1 initiative that developed CRSPs for all 87 Minnesota counties. This multiagency effort had two key components:

1. MnDOT dedicated approximately 50 percent of HSIP funds to support implementation of safety projects along the county roadway system. Prior to this, virtually all safety funds were used for projects along State trunk highways.
2. MnDOT provided technical assistance to all 87 counties to analyze and document the outcome of a systemwide systemic risk assessment, prioritize each county's roadway facilities, and share a list of recommended, high priority safety projects for at-risk locations.

Counties have implemented safety treatments using a variety of methods and funding sources. To date, nearly 85 percent of Minnesota counties have participated in HSIP with more than $\$ 123$ million in safety improvements deployed across the county system. The most common types of safety projects implemented were relatively low-cost and highly effective in reducing severe crashes. Examples of these countermeasures include:

- Shoulder improvements and striping along rural segments
- Chevrons on curves
- Upgraded traffic signs and intersection markings and street lighting at intersections

A further breakdown of typical safety projects implemented by Minnesota counties between 2008-2020 is shown in Table 1-1.

Table 1-1. County Implemented Safety Projects
HSIP Approved 2008-2020 No of Projects HSIP Funding

Segments		
Edgeline Improvement	6	$\$ 1,140,000$
Shoulder Improvement	108	$\$ 26,433,000$
Signing	4	$\$ 399,000$
Miscellaneous Improvements	1	$\$ 630,000$
Rumble Strip	29	$\$ 2,478,000$
Striping	218	$\$ 25,872,000$
Guardrail	2	$\$ 220,000$
Rumble StripE	13	$\$ 1,779,000$
Lane Reassignment	1	$\$ 245,000$
Clear Zone	2	$\$ 298,000$
Total Segments	$\mathbf{3 8 4}$	$\$ 59.5$ million

Intersections		
Geometrics	24	$\$ 11,188,000$
Lighting	59	$\$ 5,100,000$
Signing	31	$\$ 1,741,000$
Roundabout	20	$\$ 16,513,000$
Miscellaneous Improvements	28	$\$ 14,161,000$
Signal System	27	$\$ 6,178,000$
RICWS	11	$\$ 1,743,000$
Pavement Markings	2	$\$ 274,000$
Intersections Totals	$\mathbf{2 0 2}$	$\$ 56.9$ million

Curves		
Chevrons	51	$\$ 3,780,000$
Geometrics	1	$\$ 424,000$
Shoulder Improvement	5	$\$ 1,291,000$
High Friction Surface Treatment	2	$\$ 952,000$
Guardrail	1	$\$ 130,000$
Total Curves	$\mathbf{5 6}$	$\$ 6.6$ million
Totals	$\mathbf{6 4 6}$	$\$ 123$ million

Note:
${ }^{\text {a }}$ Geometrics refers to geometric improvements or changes such as changing a stop-controlled intersection to a roundabout or change of curve horizontal or vertical curvature.

The impact of the increased investment in local safety projects has been dramatic. While the number of fatal crashes has increased nationally, the fatal crashes in Minnesota continue to steadily decline until 2019. Since 2013, there has been an approximate 3 percent reduction of fatal crashes on the State system and a 22 percent reduction in the number of fatal crashes on the county system (Figure 1-1). This time period coincides with the completion of CRSP 1 plans and the implementation of the associated safety projects. However, since 2020 the state has shown a steep increase in fatal crashes. This Country Road Safety Plan coupled with strategic investment in traffic safety using available state and federal HSIP funds, will be instrumental in achieving continued declines in fatal and serious injury crashes.

Figure 1-1. Fatal Crashes along Minnesota Roads

1.2 National Context

The HSIP is a core federal-aid program that began in 2005 with the authorization of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users or SAFETEA-LU. SAFETEA-LU required all States to develop data-driven, multidisciplinary SHSPs focused on reducing fatalities and serious injuries on all public roadways. Subsequent transportation legislation, the Moving Ahead for Progress in the 21st Century Act (MAP-21), the Fixing America's Surface Transportation Act (FAST) and the Infrastructure Investment and Jobs Act (IIJA) or the Bipartisan Infrastructure Law (BIL) signed in 2021 extends through 2026, continued
to focus transportation funding on improving safety for all public roadways. The HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance.

The trendline of fatalities throughout the United States and in Minnesota (Figure 1-2), indicates HSIP investments have resulted in lives saved and injuries prevented since 2005. However, traffic crashes still pose a major public health issue in the United States. In 2021, approximately 42,000 people were killed in traffic crashes; an average of 115 people killed every day (FARS, 2021).

Figure 1-2. Trend in Traffic Fatalities in United States and Minnesota

Achieving greater results and realizing the vision of zero fatalities requires continuous improvements to transportation safety planning and program management. Each state may allocate their transportation and HSIP funding in a manner that addresses their unique needs. The legislative requirement to address safety on all roads is founded on two key facts:

1. Nationally, local governments own and operate almost 76 percent of all public roads (FHWA, 2019) and approximately 35 percent of traffic fatalities occur along these roads (FARS, 2017).
2. Historically, state departments of transportation manage the statewide safety programs, and, in most states, the majority of safety funding has been dedicated to improvements along the state highway system.

States can only achieve significant severe crash reductions if safety on local roads is an integral part of each state's safety planning and investment efforts. In response to federal legislation, all states have accepted an oversite role for safety across all roads in the state and a number of states have dedicated a portion of their HSIP funds to local system improvements. However, only a few states have successfully integrated local agencies into statewide safety planning efforts, Minnesota being one of them.

1.3 State Context

Starting in 2007, Minnesota's SHSP highlighted the need to improve safety of all public roads, including local roads. The current SHSP (2020) continues to emphasize local roads and the plan identified 16 focus areas based on data analysis and stakeholder outreach. The top four focus areas include:

- Intersections (47 percent of severe crashes)
- Lane Departure (31 percent of severe crashes)
- Impairment (25 percent of severe crashes)
- Speed (20 percent of severe crashes)

Total severe crash percentages will be greater than 100 percent because crashes may have multiple contributing factors. For example, an impaired driver may run off the road resulting in a severe injury. In this situation, the crash would be counted as both Lane Departure and Impaired Roadway User focus areas. The SHSP also identified Minnesota's high priority infrastructure-based safety strategies and countermeasures, including:

- Lane Departure
- Center and edge rumble strips
- Enhanced pavement markings (6-inch edgelines and embedded markings)
- Center buffers
- Wider/paved shoulders
- Maintain clear zones
- Intersections
- Enhanced traffic signs and markings
- Street lights
- Alternative Intersections (i.e. Roundabouts)
- Pedestrian/Bicycle strategies (i.e. Pedestrian leading intervals, intersection design)
- Red light running enforcement assistance (confirmation lights)
- Restricted/channelized intersections (along divided roadways)

1.4 Clay County - Local System Description

There are approximately 139,000 miles of roadways in Minnesota. Counties own and operate almost 45,000 miles (32 percent) of those roadways. Approximately 32,000 of these roadway miles are paved (70 percent) and the remaining 13,000 miles have a gravel surface. Statewide analysis of County roads indicated a majority of the severe crashes occurred on paved rather
than gravel roadways, 90 percent and 10 percent, respectively. As a result, the focus of CRSP 2 is on paved County roads.

Figure 1-3 shows Clay County roads that were analyzed as part of this project (does not include gravel roads) and county boundary. The Clay County Highway Department in Minnesota is responsible for maintenance and management of a system that includes:

- 738 total miles of county roads
- 403 miles of county state-aid highways (CSAH) roadways, which are eligible for direct State Trunk Highway funding
- 335 miles of county roads
- 919 miles of unorganized township roads
- 325 bridges in the County and township system
- 55 horizontal curves

Figure 1-3. Clay County Map

Between the years 2008-2020, Clay County secured approximately $\$ 0.72$ million in HSIP funding to support the implementation of 9 safety projects at roadway segments and intersections (Table 1-2). These safety projects included shoulder improvements, striping, shoulder rumble strips, and lighting to improve the visibility of intersections.

Table 1-2. Clay County Highway Safety Improvement Program Overview

Project Description	No. of Projects	Project Cost
Segments		
Shoulder Improvement	1	$\$ 159,000$
Striping	5	$\$ 405,000$
Rumble Strip	1	$\$ 35,000$
Total Segments	$\underline{7}$	$\$ 0.60$ million
Intersections		
Lighting	$\underline{2}$	$\$ 122,000$
Total Intersections	9	$\$ 0.12$ million
Total Projects		$\$ 0.72$ million

This page intentionally left blank

2.0 Approach

CRSP 2 aligns with the Minnesota SHSP and supports the TZD statewide target of fewer than 225 traffic fatalities and 980 serious injuries by the year 2025.

In recognition of the TZD Program, Clay County identified the following goals for this update:

- Provide the basis for a shared understanding of the approach used to analyze and address safety on Clay County's roadway system
- Provide improved understanding of the effectiveness (at reducing crashes) of safety and maintenance strategies
- Document a prioritized list of HSIP-eligible projects and safety-related maintenance activities
- Document safety issues in Clay County's small cities and townships
- Provide information to increase understanding of pedestrian safety issues
- Conduct a data-driven safety analysis of the county's roadway system
- Identify and prioritize candidate locations for safety investment
- Develop safety projects - with specific strategies at specific locations

The CRSP 1 and CRSP 2 approach has been to work closely with county safety stakeholders to establish program goals and develop a collaborative, data-driven plan along with safety treatments at appropriate locations to direct the local safety program. This was accomplished through data analysis, identification of safety emphasis areas, development of a comprehensive list of safety strategies, coordination with safety stakeholders through meetings and workshops, narrow the list of strategies to county specific strategies, identify safety projects and develop the safety plan. Workshop and meeting summaries can be found in Appendix B. This section of the plan discusses the project approach in more detail.

2.1 Proactive Systemic Safety Analysis

From the beginning of the Federal highway safety program in the 1970s, the primary method for conducting a safety analysis largely involved a reactive approach by searching along highway systems for high-crash locations. A corridor segment or intersection is generally considered a high-crash location if the severe crash rate exceeds the severe critical crash rate. Using this methodology was a barrier to local systems participating in the statewide safety program because no locations along the local roadway systems met the high-crash definition. As a result, almost all safety investments were made along the state's system of trunk highways.

Minnesota's 2007 SHSP prioritized increasing the level of local highway agency involvement in statewide safety planning efforts (MnDOT, 2007). Following adoption of the SHSP, MnDOT and Minnesota's county engineers developed a new safety analysis process to supplement the highcrash location search. This systemic risk assessment, which uses a data-driven process, looked at crash patterns to determine high-risk locations that would be safety investment candidates. The five key steps in the CRSP systemic process include:

1. Conduct a crash analysis that includes reviewing each of the approximate 2,500 statewide locations along the county roadway system where severe (fatal + serious injury) crashes occurred during a 5-year study period.
2. Identify roadway and traffic characteristics common at locations with severe crashes.
3. Adopt a list of risk factors that show locations with a specific risk factor and a higher density (number of severe crashes per mile, curve, or intersection per year) of crashes rather than locations that don't contain this risk factor.
4. Conduct a census of each county system of roadway segments, curves, and intersections and record the number of risk factors at each location.
5. Prioritize the county roadway system for safety investment based on the number of risk factors at each location. The greater the number of risk factors, the greater the risk of a severe crash and, therefore, the higher the priority the candidate location is for safety investment.

This systemic risk analysis was conducted across all 87 counties as part of the CRSP 1 efforts. At the end of that project, a final review concluded that the new process was successful. More than $\$ 300$ million in low-cost safety improvements along the county system were identified and over $\$ 123$ million of HSIP-funded CRSP safety projects were implemented in CRSP programs.

Successful CRSP project implementation led the FHWA to approve and adopt this systemic risk analysis technique as a model for their own, national, data-driven safety analysis initiative.
Most significantly, the systemic approach allowed agencies to move from a reactive approach of addressing severe crashes to a proactive approach of deploying safety projects at high priority at-risk locations.

Based on success in the CRSP 1 effort, this CRSP 2 systemic risk analysis follows the same five key steps used in the CRSP 1 effort.

2.2 Safety Workshop

In addition to the technical analysis, an integral part of CRSP 2 included holding a safety workshop. Clay County's workshop was held on October 31, 2018 at the Clay County Law Enforcement Center (refer to Appendix C for details). This workshop was attended by 19 of the county's safety partners representing engineering, enforcement, education, and emergency response as well as the County's elected officials.

The CRSP Project Team's primary workshop goals included creating a shared understanding of the technical approach to updating the CRSP, having participants identify what they considered important themes to advance road safety in Clay County, and providing feedback to help the County prioritize infrastructure safety strategies. Figure 2-1 shows participants at the Clay County Safety Workshop.

Figure 2-1. Clay County Safety Workshop

During the workshop, the CRSP 2 Project Team outlined the technical approach and described key parts of the data-driven analytical process, including the proactive systemic risk evaluation, and provided an overview of the Clay County system crash data. Participants in the workshop identified a wide range of safety concerns, such as:

- The importance of local input on infrastructure and non-infrastructure safety improvements: for example, are farmers' concerns representing agriculture beyond beet farms being considered?
- Safety concerns surrounding beet trucks:
- High-speed motorists recklessly passing beet tractors
- Increased safety risk due to licensing concerns such as no driver's license nor CDL required; first haul operation beet drivers can be as young as 16 ; drivers operating with a revoked driver's license thereby increasing crash risk
- The potential for driver fatigue; the first haul is about 12 hours of work
- The value of community partnerships to promote strengthened drivers' education and parental involvement
- Challenges of the County's grant supported TZD Coalition and aligning state grant requirements with local needs
- Access management and better coordination among jurisdictions when applying/approving permits
- Minnesota's overall seatbelt use rate is 93%, however, observational surveys reflect a rural seatbelt use percentage in the low 60s
- Growing concerns of bicycle and pedestrian safety from Farmville to Moorhead

In addition to the County highlighting implemented safety projects, the Project Team offered a discussion of featured infrastructure safety strategies for Clay County's consideration such as thru-stop to all-way stop/yield signs, transverse rumbles, skew removal, dynamic speed feedback sign, Rectangular Rapid Flash Beacon (RRFB), LED stop signs, Rural Intersection Crossing Warning System (RICWS) and roundabouts.

The safety workshop concluded with a discussion on two priority site locations:

1) Intersection of CSAH 12 and CSAH 52
2) Intersection of CSAH 10 and CSAH 31

For each location, workshop participants discussed an overview of the site; their safety concerns and observed trends; crash facts; County-installed safety improvements; and discussed alternative safety strategies. Potential safety recommendations included advanced stop ahead pavement markings and stop bars on all four stops with consideration using embedded stop bars. Recent MnDOT research data showed RICWS provides little to no benefit. As such RICWS will not be an eligible safety strategy for federal HSIP grants.

3.0 Crash Analysis

The CRSP 2 is based on a data-driven analytical process to identify optimal safety investment candidates. A data-driven process is necessary, so all crash types and roadway facilities are not mistakenly considered equal candidates for safety projects. However, prior studies show that while crashes involving fatalities and serious injuries are widely scattered across Minnesota's local system of roads (an average of 0.006 severe crashes per mile per year), these crashes are neither uniformly nor randomly scattered. As a result, analysis of crash data and roadway system characteristics are necessary to support prioritization, which is an integral part of the strategic safety planning process.

The level of statewide safety funding is not sufficient to support wide deployment of projects that address all crash types. Therefore, states are encouraged to adopt a short list of safety focus areas among the categories that include the greatest number of severe crashes. Focusing safety investment on the top-ranked focus areas is likely to result in the greatest opportunity for crash reduction derived from a data-driven analytical process. This process involved three steps:

1. Disaggregate crash types into categories (focus areas) defined by FHWA, then rank each category based on the number of crashes that involve fatalities and serious injuries (severe crashes).
2. Identify the types of roadway facilities at which the priority crash types occur in the greatest numbers.
3. Identify high priority safety countermeasures/strategies linked to the specific crash types.

3.1 Safety Focus Areas

Consistent with FHWA guidance, Minnesota adopted the number of fatal and serious injury (severe crashes) vehicle related crashes as the safety performance measure underlying development of the CRSP 2. Crash data from the 5-year period 2016 through 2020 were assembled, analyzed, and disaggregated into 16 safety focus areas, which are shown in Table 3-1. In addition to disaggregating by safety focus area, severe crashes were also disaggregated by state highways versus county roadways. This 2011 to 2015 timeframe was selected as the study period since Minnesota's new crash records system was not populated with enough years of more recent data at the onset of this update effort to support a 5-year study period.

Based on statewide data analysis, the most frequent contributing factors for severe crashes are given priority in Minnesota's SHSP (MnDOT, 2020) as Safety Focus Areas, which are shown in Figure 3-1. The colors of the groups also correspond with the colors in Table 3-1, which will be discussed shortly.

Figure 3-1. Focus Area Priorities

The analysis reviewed statewide crash data across all systems. Crashes that occurred along the County jurisdiction were disaggregated by the state, Area Transportation Partnership (ATP) and county levels also including Greater Minnesota Area and Metro areas. Table 3-1 shows crashes at the statewide level and within the Greater Minnesota Area and Metro areas for all systems and county system only. Table 3-2 shows the same crashes but for ATP 4 and for Clay County.

Assigning crashes to the safety focus areas often involves double or triple counting because the number of severe crashes documented is greater than the actual number of crashes across the state and county systems. Multiple counting is the result from a crash potentially having many contributing factors. An example could be a single severe crash involving an unbelted, older driver at an intersection. This crash would include driver behavior of unbelted and the older driver safety focus areas. Therefore, the actual number of crashes across the state and county systems may be lower than the total number of crashes when broken down by safety focus areas. In addition, the data sets used to develop the focus area tables and the crash trees in section 3.2 are different and occasionally may result in the total numbers of severe crashes at the county level being different than the sum of crashes in the individual sections.

Figure 3-2 shows the various ATPs throughout the state. The analysis relied on statewide and district level crash trends because in most cases, the total number of severe crashes that occur in a 5-year timeframe within a single county is too small and would not be considered statistically reliable. To have a statistically reliable dataset at any level, a minimum of 500 crashes is required (Minnesota Local Road Research Board, 1998).

Figure 3-2. Minnesota's Eight Area Transportation Partnerships

Results of the analysis were consistent among Greater Minnesota, ATP 4, and Clay County and support adoption of the following infrastructure-based safety focus areas:

- Lane Departure (run-off-road and head-on)
- Intersections
- Non-motorized (pedestrians/bicyclists)

This page intentionally left blank

Table 3-1. Minnesota Crash Focus Areas (2016-2020)

		Statewide				Greater Minnesota				Metro			
		All Systems		County System		All Systems		County System		All Systems		County System	
	Total Severe Crashes	8960	100\%	3388	100\%	4859	100\%	1962	100\%	4100	100\%	1426	100\%
$\begin{aligned} & \text { む } \\ & \text { む̀ } \\ & 0 \\ & 0.0 \end{aligned}$	Intersection	4358	49\%	1583	47\%	1991	41\%	721	37\%	2367	58\%	862	60\%
	Lane Departure	3852	43\%	1639	48\%	2465	51\%	1132	58\%	1387	34\%	507	36\%
	Run-Off-Road	2850	32\%	1238	37\%	1890	39\%	929	47\%	960	23\%	309	22\%
	Head-On	1002	11\%	401	12\%	575	12\%	203	10\%	427	10\%	198	14\%
	Impaired	2449	27\%	963	28\%	1429	29\%	618	31\%	1020	25\%	345	24\%
	Speed	2012	22\%	693	20\%	1132	23\%	437	22\%	880	21\%	256	18\%
	Unbelted	1362	15\%	507	15\%	955	20\%	380	19\%	407	10\%	127	9\%
	Inattentive	904	10\%	365	11\%	537	11\%	230	12\%	367	9\%	135	9\%
$\begin{aligned} & \text { U } \\ & \stackrel{0}{00} \\ & \stackrel{N}{0} \\ & \stackrel{0}{\omega} \end{aligned}$	Older Driver	1609	18\%	600	18\%	969	20\%	339	17\%	640	16\%	261	18\%
	Motorcycle	1502	17\%	659	19\%	851	18\%	404	21\%	651	16\%	255	18\%
	Younger Driver	1422	16\%	531	16\%	819	17\%	321	16\%	603	15\%	210	15\%
	Non-motorist	1445	16\%	383	11\%	477	10\%	110	6\%	968	24\%	273	19\%
	Pedestrian	1104	12\%	273	8\%	369	8\%	74	4\%	735	18\%	199	14\%
	Bicyclist	343	4\%	110	3\%	109	2\%	36	2\%	234	6\%	74	5\%
	Commercial Vehicles	794	9\%	237	7\%	521	11\%	149	8\%	273	7\%	88	6\%
	Work Zone	202	2\%	58	2\%	85	2\%	24	1\%	117	3\%	34	2\%
	Unlicensed	1572	18\%	559	16\%	792	16\%	322	16\%	780	19\%	237	17\%
	Trains	23	0\%	5	0\%	21	0\%	5	0\%	2	0\%	0	0\%
	Deer/Animal	176	2\%	109	3\%	156	3\%	98	5\%	20	0\%	11	1\%
	Winter Weather	1066	12\%	358	11\%	668	14\%	236	12\%	398	10\%	122	9\%

a. Focus Area definitions consistent with the 2020-2024 Minnesota Strategic Highway Safety Plan unless otherwise noted.
b. County System via crash report attribute 'Route System’ values CSAH (4) and County Road (7)
c. Head-on here includes sideswipe opposite direction (per SHSP) but omits Deer/Animal Crashes.

This page intentionally left blank

Table 3-2. Clay County Crash Focus Areas (2016-2020)

		Clay County				ATP 4			
		All Systems		County System		All Systems		County System	
	Total Severe Crashes	58	100\%	15	100\%	533	100\%	225	100\%
	Intersection	27	47\%	8	53\%	208	39\%	81	36\%
	Lane Departure	28	48\%	8	53\%	285	53\%	128	57\%
	Run-Off-Road	22	38\%	7	47\%	234	44\%	110	49\%
	Head-On	6	10\%	1	7\%	51	10\%	18	8\%
	Impaired	16	28\%	5	33\%	180	34\%	77	34\%
	Speed	19	33\%	7	47\%	141	26\%	63	28\%
	Unbelted	16	28\%	6	40\%	149	28\%	59	26\%
	Inattentive	4	7\%	3	20\%	55	10\%	30	13\%
	Older Driver	13	22\%	4	27\%	104	20\%	38	17\%
	Motorcycle	6	10\%	2	13\%	84	16\%	44	20\%
	Younger Driver	8	14\%	0	0\%	80	15\%	37	16\%
	Non-motorist	4	7\%	0	0\%	40	8\%	12	5\%
	Pedestrian	3	5\%	0	0\%	32	6\%	9	4\%
	Bicyclist	1	2\%	0	0\%	9	2\%	3	1\%
	Commercial Vehicles	11	19\%	4	27\%	61	11\%	20	9\%
	Work Zone	1	2\%	1	7\%	5	1\%	3	1\%
	Unlicensed	14	24\%	6	40\%	97	18\%	39	17\%
	Trains	0	0\%	0	0\%	4	1\%	0	0\%
	Deer/Animal	0	0\%	0	0\%	24	5\%	15	7\%
	Winter Weather	9	16\%	2	13\%	72	14\%	33	15\%

a. Focus Area definitions consistent with the 2020-2024 Minnesota Strategic Highway Safety Plan unless otherwise noted.
b. County System via crash report attribute 'Route System' values CSAH (4) and County Road (7)
c. Head-on here includes sideswipe opposite direction (per SHSP) but omits Deer/Animal Crashes,

This page intentionally left blank

3.2 Roadway Facilities

As part of the data-driven prioritization process, crash trees were developed using statewide (Figure 3-3) and Clay County (Figure 3-4) data to document a disaggregation by state versus local systems, by rural versus urban areas, and by roadway segment versus intersection related crashes.
A statewide crash tree was developed because the results would not meet the threshold to be considered statistically significant since there were three severe crashes per year on Clay County only roadways. The percentages associated with the various disaggregation between statewide and county values varied slightly, the key takeaways were the same and suggest the following priorities for Clay County:

- Rural roadways (80 percent of severe crashes)
- Lane Departure crashes along segments (83 percent), including both single-vehicle run-offroad (80 percent) and multi-vehicle head-on (20 percent)
- Lane Departure crashes in curves (40 percent)
- Right-angle crashes at through/stop controlled rural Intersections

The four bullets above are shown visually in Clay County's rural crash tree. Eighty percent of the severe crashes in a rural environment is found in the fourth row, first box from the left, titled Rural. Following the tree down to the segment box shows 50 percent of severe crashes and stepping down twice below the Lane Departure box shows that "Run-Off-Road" severe crashes comprise 80 percent of Lane Departure and the other 20 percent were identified in the HeadOn box. For Lane Departure crashes in curves, the 40 percent is calculated by adding up severe crashes in the Curvature Characteristics boxes for horizontal and/or vertical curvature related divided by the total number of Lane Departure crashes.
Additional analysis of severe crashes was conducted to help focus attention on the portion of county roadway system at higher risk. This analysis concluded that paved county roadways across the state account for approximately 70 percent of roadway miles but around 94 percent of severe crashes. Paved county roadways also have a crash density (0.02 severe crashes per mile per year) that is 10 times higher than the crash density on gravel roads. This information supports the focus of the analytical process on paved county roadways. The severe crash overrepresentation along paved county roads also has been documented in North Dakota, South Dakota, and lowa. The proportion of paved versus gravel roads and the distribution of severe crashes varies from state to state, but the trend is the same in each case, with severe crashes overrepresented along paved county roadways.
Detailed analysis of severe crashes was also extended to rural county roadway intersections. Based on a sample of over 11,000 rural intersections (all Phase 1 counties), county roadway intersections with state highways and other county roadways accounted for 36 percent of intersections but 72 percent of severe crashes. County roadway intersections with township roads accounted for 64 percent of intersections but only 28 percent of severe crashes. County roadway intersections with state highways and other county roadways also have a crash density (0.03 severe crashes per intersection per year) that is 5 times higher than at county roadway intersections with township roads. This information supports the decision to focus the remainder of the analytical process on county roadway intersections with state highways and other county roadways.

This page intentionally left blank

Figure 3-3. Minnesota Statewide Crash Tree - County Rural System (2016-2020)

This page intentionally left blank

Curvature Characteristics				
Horiz. Only	4	19%	0	0%
Horiz. \& Vert.	1	5%	0	0%
Vert. Only	0	0%	0	0%

Created using the MnDOT Crash Report Tool on 12/14/2022.
Figure 3-4. Clay County Crash Tree - County Rural System (2016-2020)

This page intentionally left blank

3.3 Safety Strategies and Countermeasures

Adoption of the Lane Departure, Intersections, and Non-motorized safety focus areas began the process for determining appropriate safety strategies. Several safety research reports were reviewed, including:

- National Cooperative Highway Research Program's (NCHRP's) Report 500 Series (20032009)
- FHWA's Crash Modification Factor Clearinghouse (2014)
- American Association of State Highway and Transportation Officials' (AASHTO's) Highway Safety Manual (2010)

Following the review, priority was given to adopted safety focus areas to reduce the number of potential infrastructure-related safety strategies from more than 100 to around 60 . From there, Clay County screened the list of strategies based on factors such as proven effectiveness (to reduce severe crashes), implementation cost, consistency with Minnesota's SHSP priorities, probability of being supported by HSIP funding, prior experience and acceptance in Clay County, and safety partner input. This process resulted in selection of the 52 priority safety strategies listed below for use in the subsequent safety project development exercise.

- Rural Segments
- Center Rumble Strips (Including New Mumble Design)
- Shoulder/Edge Rumble Strips
- Center Buffer Areas
- Safety Edge (Figure 3-5)
- Enhanced Edgeline ($6^{\prime \prime} \& 8^{\prime \prime}$)
- Shoulder Paving ($2^{\prime}, 4^{\prime}, 6^{\prime}$) (Figure 3-6)
- Clear Zone Enhancements
- Ditch/Embankment Improvements
- Separated Bike Trail/Path
- Rural Curves
- Curve Warning Sign, Speed Advisory \& Chevrons or Arrow Board (Figure 3-7)
- Delineators
- High-Friction Surface Treatment (HFST)
- Dynamic Curve Signing
- Lighting
- Clear Zone /Enhancements
- Reconstruct TT to a Single T
- Rural Intersections
- Upgrade Signs and Pavement Markings
- Street Lights (Figure 3-8)
- Thru-Stop to All-Way Stop/Yield
- J-Turn
- Rural Intersection Conflict Warning System (RICWS)
- Off-set T-Intersection
- Roundabout
- Turn Lanes (Offset, Channelized)
- Continuous Green T
- Mainline Dynamic Warning System
- Median Acceleration Lanes (MALs)
- LED Stop Signs (Figure 3-9)
- Remove Skew / Realign Intersections
- Urban Segments
- Roadway configuration (convert to 3-lane)
- $3 / 4$-Intersection
- Divided 2-lane or 4-lane Roadway
- Access Management
- Bike Lane/Boulevard (Figure 3-10)
- Urbanization (make it feel urban)
- Vehicle Speed Feedback Sign (Figure 3-11)
- Sidewalks
- Urban Intersections
- Echelon
- Continuous Flow Intersection (CFI)
- Signalized J-Turn Intersection
- Confirmation Lights
- Pedestrian Countdown Timers
- Leading Pedestrian Interval
- Curb Extensions
- Median Refuge Island (Figure 3-12)
- Roundabout (Figure 3-13)
- Mini Roundabout
- Urbanization (make it feel urban)
- Rectangular Rapid Flash Beacon (RRFB) (Figure 3-14)
- Flashing Yellow Arrow (FYA)
- Reflective Street Light Backplate
- Turn Lanes (Offset, Channelized)
- Zig Zag Pavement Markings
- Pedestrian Education/Visibility

After reducing the number of safety strategies to these shown, data analysis of the roadway network continued to identify the prioritized locations and correlate the appropriate treatments to develop effective recommended projects.

Figure 3-5. Safety Edge

Figure 3-6. Shoulder Paving

Figure 3-7. Chevrons

Figure 3-8. Street Light

Figure 3-9. LED Stop Sign

Figure 3-10. Bike Lane/Boulevard

Figure 3-11. Vehicle Speed Feedback Sign

Figure 3-12. Median Refuge Island

Figure 3-13. Roundabout

Figure 3-14. Rectangular Rapid Flash Beacon (RRFB)

4.0 System Evaluation

The analytical approach that underlies CRSP 2 is a proactive systemic safety evaluation that identifies, evaluates, and prioritizes roadway safety deficiencies based on crash risk.

Prior to undertaking Minnesota CRSPs, the traditional method supporting safety project development for HSIP in Minnesota involved searching across the state's highway system for intersections and roadway segments with multiple crashes - considered high-crash locations. Around the time that MnDOT adopted increasing local agency involvement in the HSIP, they also recognized that reliance on the high-crash method of analysis presented two major problems. First, the method was entirely reactive - crashes had to occur before any safety investments could be made. This resulted in the public asking agencies after a severe crash occurred - "How many people have to die before something is done?" Under this high-crash analytical method, crashes had to occur and be counted prior to making safety improvements.

Experience suggested that when using the high-crash methodology there were only a few locations across Minnesota's expansive local system that would qualify as a high-crash location. Relying on this method alone was a barrier to deploying safety improvement projects along local systems.

The solution to these problems was the development of a new safety analysis approach - the proactive systemic method that resulted from collaboration between MnDOT and the counties. The underlying premise for this systemic process is that severe crashes along the county roadway system are infrequent and widely scattered -0.01 severe crashes per year per mile across the 45,000 -mile county system. However, the expectation was that these severe crashes were neither uniformly nor randomly scattered and that a set of roadway characteristics could be found at severe crash locations that could help predict where crashes were most likely to occur at future locations.

The systemic process used for CRSP 2 was refined from the CRSP 1 effort. While both analyses consisted of reviewing basic roadway and traffic characteristics along the county system that documented severe crashes, CRSP 2 increased the total number of data elements collected as well as expanded the detail of prior data elements across segments, intersections and curves. For example, the data element "Alignment Skew" in CRSP 1 had a binary option (yes/no) however data analysts for CRSP 2 data collection efforts measured the actual angle of skew to the nearest five degrees. In total, there were 79 unique data elements collected for the CRSP 1 effort for segments, intersections, and curves in rural and urban areas. There was an approximate 50 percent increase (117) in the total number of data elements that were collected for CRSP 2. This additional detail resulted in the generation of more risk factors through a crash frequency analysis leading to a more comprehensive prioritization effort. The following sections describe in more detail how risk factors were identified and the subsequent prioritization process.

4.1 Risk Factor Identification

The process of identifying risk factors for CRPS 2 followed a similar process to that of CRSP 1; review the locations with severe crashes, note the roadway and traffic characteristics, and test for over-representation. Examples of the results of the testing for over-representation include:

- Rural Segments: Segments where access density (field entrances + private driveways + public road intersections/mile of roadway) is between 7 and 18 per mile accounted for 80 percent of all severe crashes and 85 percent of severe Lane Departure crashes versus 73 percent of rural roadway miles (Figure 4-1).
- Urban Segments: Segments where access density is between 15 and 25 per mile accounted for 28 percent of all severe crashes and 18 percent of severe rear-end plus sideswipe same direction crashes versus 29 percent of urban roadway miles in Greater Minnesota (Figure 42).
- Rural Intersections: Intersections with total entering traffic volumes exceeding 2,000 vehicles per day accounted for 67 percent of all severe crashes and 70 percent of severe right-angle crashes versus 31 percent of all rural intersections (Figure 4-3).
- Urban Intersections: Intersections with total entering traffic volumes exceeding 12,000 vehicles per day accounted for 63 percent of all severe crashes and 59 percent of severe right-angle crashes versus 40 percent of all rural intersections (Figure 4-4).

Note: MVMT = million vehicle miles traveled
Figure 4-1. Systemic Risk Factor Rural Segment Access Density

Notes: MVMT = million vehicle miles traveled
Figure 4-2. Systemic Risk Factor Urban Segment Access Density

Figure 4-3. Systemic Risk Factor Rural Intersection Total Entering Traffic Volume

Figure 4-4. Systemic Risk Factor Urban Intersection Vehicle Related Total Entering Vehicles

In addition to testing each risk factor for over-representation, tests were also conducted to demonstrate that increasing numbers of risk factors were associated with greater risk, as measured by the density of crashes. Examples of the testing results for increased crash density include:

- Rural Intersections: Intersections with 5 risk factors present had a severe crash density that were twice the average for all rural intersections and the severe crash density for intersections with 6 or more risk factors were at least four times higher than the average (Figure 4-5).
- Rural Curves: Curves with 6 to 8 risk factors present had severe crash densities and severe Lane Departure crash densities as much as six times higher than the average for all rural curves (Figure 4-6).

Figure 4-5. Rural Intersection Crash Density Distribution Versus Systemic Risk Rating

Figure 4-6. Rural Curve Severe Crash Density Distribution Versus Systemic Risk Rating

The results of over-representation testing and severe crash distribution along with additional data recommended the use of an expanded list of risk factors for Clay County. The adopted risk factors for rural segments, curves and intersections plus urban segments and intersections in Clay County are documented in Tables 4-1 through 4-6.

Table 4-1. Rural Segment Risk Factors

Risk Factor	Risk Factor Criteria
Speed Limit	55 miles per hour or greater
ADT Single Vehicle ${ }^{1}$	500 to 2,000 vehicles per day
ADT Multi-Vehicle 2	1,250 vehicles per day and greater
Access Density	More than 7 accesses per mile (driveways, field entrances, and public streets), but less than 18 per mile
Curve Density	.6 or more curves per mile
Edge Risk	2S with no shoulder or steep slopes or 3 deficiencies (no shoulder, steep slope, or fixed objects)

${ }^{1}$ Risk factor intended to address severe crashes involving single vehicles
${ }^{2}$ Risk factor intended to address severe crashes involving multiple vehicles
Table 4-2. Curves Risk Factors

Risk Factor	Risk Factor Criteria
Radius	500 feet to 1,400 feet
Traffic Volume	200 to 800 vehicles per day
Lane Width	Less than 12 feet
Shoulder Type	None, gravel, composite
Total Cross Section Width	28 to 34 feet
Adjacent Intersection	Roadway or railroad crossing
Visual Trap	Present
Outside Edge Risk	2 2S or 3 deficiencies (no shoulder, steep slope, or fixed objects)

Table 4-3. Rural Intersection Risk Factors

Risk Factor	Risk Factor Criteria
Context Zone	Commercial, industrial, mixed use, or residential
Total Entering ADT	Volume $\geq 2,000$ vehicles per day OR
ADT Cross Product Greater than 1,000,000 vehicles per day Leg Configuration 4 Alignment Skew Greater than 10 degrees Adjacent Railroad Crossing Present Adjacent Curve Horizontal, vertical, or both Adjacent Commercial Development Present Previous STOP Greater than 5 miles Major Approach Speed Limit 60 miles per hour or greater on either major approach Major Approach Turn Lane Left/through/through/right, and turn/bypass on Configuration	

Table 4-4. Urban Segment Risk Factors

Risk Factor	Risk Factor Criteria
Context Zone	Commercial and mixed use
Speed Limit	50 and above miles per hour
Lane Width	10 to 11.5 feet
Edgeline Striping	None
Parking	Present
ADT	4,000 to 14,000 vehicles per day
Access Density	Greater than 15 accesses per mile (driveways, field entrances and public streets), but less than 25 per mile
Cross Section	Multi-lane
Edge Risk	3 deficiencies (no shoulder, steep slope, or fixed objects)
Shoulder Width	Less than 3 feet

Table 4-5. Urban Intersection Risk Factors/Vehicle Related Crashes

Risk Factor	Risk Factor Criteria
Context Zone	Commercial
Traffic Control Device	Signal
Total Entering ADT	Greater than 12,000 vehicles per day
OR	OR
ADT Cross Product	Greater than 20,000,000 vehicles per day
Leg Configuration	4
Major Division Type	Divided
Alignment Skew	Greater than 10 degrees
Adjacent Commercial Development	Present
Major Approach Speed Limit	40 miles per hour and greater
OR	OR
Minor Approach Speed Limit	35 miles per hour and greater
Major Approach Left Turn Phasing	Any type of permitted operation
Major Approach Turn Lane	2 left turn lanes OR 2 or more through lanes
Configuration.	

Table 4-6. Urban Intersection Risk Factors/Pedestrian/Bike Related Crashes

Risk Factor	Risk Factor Criteria
Traffic Signal	Present
Total Entering ADT	12,000 and greater
Adjacent Development	Present
Number of Lanes Crossed	4 or more
Presence of Sidewalk	Some or none
Crossing Type	Markings only

4.2 Prioritization of Candidate Locations

The analytical process applied the adopted risk factors to Clay County's roadway segments, curves, and intersections to generate a priority listing - the greater the number of locational risk factors, the higher the candidate priority for safety project development. The overall objective was to use the risk factors to identify a minority of the county system that contained the majority of severe crashes and designate these locations as high priority candidates.

The number of risk factors varies by facility type, from a low of three risk factors for urban intersections related to Pedestrian/Bike crashes to a high of twelve risk factors for urban intersections related to Vehicle crashes. The distribution of severe crashes by risk factors also varies by facility type. As a result, the threshold for designating locations as high priority also varied, from a low of two for urban segments to a high of six for Vehicle Related urban intersections. However, across all counties, the sliding scale of risk factors generally resulted in between 20 percent and 50 percent of the system designated as high priority for safety project development. This was considered a reasonable fraction of the county system based on factors such as the amount of HSIP funding available, the typical cost of safety projects, the extraordinarily low density of severe crashes, and the goal of widely deploying safety projects across the county system.

Results of the prioritization process in Clay County include identifying the following high priority candidate locations for safety project development. Tables 4-7 through 4-12 show an example (first 10 projects) of the full project lists included in Appendix D:

- Rural Segments:
- 73 segments (272 miles) evaluated
- 37 segments (198 miles) designated as high priority (3 or more risk factors)
- Rural Curves:
- 55 curves evaluated
- 20 curves designated as high priority (3 or more risk factors)
- Rural Intersections:
- 153 intersections evaluated
- 50 intersections designated as high priority (3 or more risk factors)
- Urban Segments:
- 8 segments (12 miles) evaluated
- 2 segments (4.4 miles) designated as high priority (3 or more risk factors)
- Urban Intersections (Vehicle Related):
- 17 intersections evaluated
- 8 intersections designated as high priority (3 or more risk factors)
- Urban Intersections (Pedestrian/Bike Related):
- 17 intersections evaluated
- 8 intersections designated as high priority (2 or more risk factors)

This page intentionally left blank

Table 4-7. Rural Segment Prioritization - Example Table

List No.	Project Page No.	CRSP 2 ID	Route System	Route No.	Segment Start Description	Segment End Description	Length (Miles)	$\begin{aligned} & \text { ADT } \\ & \text { [vpd] } \end{aligned}$	Speed Limit	ADT Single- Vehicle	ADT MultiVehicle	Access Density	Curve Density	Edge Risk	Total Stars
1	1	1.001	CSAH	1	15 Miles South of Intersection of CSAH1/54th Ave NW and 4th St NW	Intersection of 90th Ave NW and Broadway St NW	3.28	1303	\star	\star	\star	\star	\star	\star	$\star \star \star \star \star \star$
14	2	11.004	CSAH	11	Intersection of CSAH11/US 10 and 70th St N	3103 ft North of Intersection of US 10 and 70th St S	0.60	1800	\star	\star	\star	\star	\star		$\star \star \star \star \star$
23	3	14.001	CSAH	14	Intersection of CSAH14/70th St S and 28th Ave S	Intersection of 100th St S and 28th Ave S	3.00	1375	\star	\star	\star	\star	\star		$\star \star \star \star \star$
66	4	6.001	CSAH	6	Intersection of CSAH6/MN 32 and 120th Ave S	Intersection of CSAH 6 and 300th St S	2.98	1350	\star	\star	\star	\star		\star	$\star \star \star \star \star$
2	5	10.001	CSAH	10	Intersection of CSAH10/MN 52 and 90th Ave S	. 35 Miles West of Intersection of MN 9 and CSAH 10	6.97	1800	\star	\star	\star	\star			$\star \star \star \star$
4	6	10.003	CSAH	10	1396 ft East of Intersection of CSAH10/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	14.84	2100	\star		\star	\star	\star		$\star \star \star \star$
8	7	100.005	CR	100	528 ft North of Intersection of CR100/Howard St and CR 100	Intersection of CR 100 and CR 102	5.26	60	\star			\star	\star	\star	$\star \star \star \star$
13	8	11.003	CSAH	11	Intersection of CSAH11/1st Ave E and King Trail Rd N	593 ft South of Intersection of 70th St S and I-94	4.36	1055	\star	\star		*		\star	* * \star *
15	9	11.005	CSAH	11	3103 ft North of Intersection of CSAH11/US 10 and 70th St S	Intersection of 28th Ave N and 70th St N	1.42	1800	\star	\star	\star	*			$\star \star \star \star$
16	10	11.006	CSAH	11	Intersection of CSAH11/70th St N and 28th Ave N	Intersection of 70th St N and 90th Ave N	5.06	1200	\star	\star		\star	\star		$\star \star \star \star$

See Appendix D for complete table of prioritized locations
Notes: ADT = average daily traffic
CRSP 2 ID Example: 1.001: 1 = Route Number 1; 001 = First Segment

List No.	Project Page No.	CRSP 2 ID	Route System	Route No.	Segment Start Description	Segment End Description	Radius [Feet]	$\begin{aligned} & \text { ADT } \\ & \text { [vpd] } \end{aligned}$	Lane Width [Feet]	High Side Shoulder Type	$\begin{gathered} \text { Total Cross } \\ \text { Section } \\ \text { Width [Feet] } \\ \hline \end{gathered}$	Adjacent Intersection	Visual Trap	Outside Edge Risk	Total Stars
52	1	96.001	CR	96	Intersection of CR96/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5	\star	\star		\star		\star	\star	\star	$\star \star \star \star \star \star$
31	2	31.001	CSAH	31	. 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19	229 ft South of Intersection of Roger St and 230th St	\star	\star			\star	\star		\star	$\star \star \star \star \star$
32	3	31.002	CSAH	31	. 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19	229 ft South of Intersection of Roger St and 230th St	\star	\star			\star	\star	\star		$\star \star \star \star \star$
41	4	35.002	CSAH	35	Intersection of CSAH35/180th Ave S and 275th St S	Intersection of MN 34 and 270th St S	\star	\star			\star	\star		*	$\star \star \star \star \star$
48	5	100.001	CR	100	528 ft North of Intersection of CR100/Howard St and CR 100	Intersection of CR 100 and CR 102			\star	\star		\star	\star	\star	$\star \star \star \star \star$
24	6	19.001	CSAH	19	Intersection of CSAH19/1st St NE and 11th St N	Intersection of 110th St N and 28th Ave N	\star	\star			\star			\star	$\star \star \star \star$
42	7	35.003	CSAH	35	Intersection of CSAH35/180th Ave S and 275th St S	Intersection of MN 34 and 270th St S	\star	\star			\star			\star	* * \star *
49	8	100.002	CR	100	528 ft North of Intersection of CR100/Howard St and CR 100	Intersection of CR 100 and CR 102	\star		\star	\star				\star	$\star \star \star \star$
54	9	96.003	CR	96	Intersection of CR96/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5		*	\star	\star				\star	$\star \star \star \star$
55	10	96.004	CR	96	Intersection of CR96/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5		*	*	*				\star	$\star \star \star \star$

See Appendix D for complete table of prioritized locations.
Notes: CR = County Road; mph = mile(s) per hour;
CRSP 2 ID Example: 1.001: 1 = Route Number 1; 001 = First Curve

Table 4-9. Rural Intersection Prioritization - Example Table

List No.	Project Page No.	CRSP 2 ID	Route System	Route No.	Major Approach	Minor Approach	Context Zone	Total Entering ADT or Cross Product ${ }^{\text {a }}$	Leg Configuration	Alignment Skew [Degrees]	Adjacent Railroad Crossing	Adjacent Curve	Adjacent Commercial Development	Previous STOP [> 5 Miles]	Major Approach Speed Limit	Major Approach Turn Lane Configuration	Total Stars
127	1	5.001	CSAH	5	US 75	CSAH 5 (100th Ave N)		*	*	\star	\star	\star			*		$\star \star \star \star \star \star$
10	2	10.008	CSAH	10	MN 9	CSAH 10 (90th Ave S)	\star	\star	\star	*				*	\star		$\star \star \star \star \star \star$
75	3	2.002	CSAH	2	US 75 (14th St S)	CSAH 2 (160th Ave S)	*	\star	\star					\star	*		$\star \star \star \star \star$
3	4	10.001	CSAH	10	CSAH 52	CSAH 10 (90th Ave S)		\star	\star	\star	\star			\star			$\star \star \star \star \star$
17	5	10.015	CSAH	10	MN 32	CSAH 10 (90th Ave S)		\star	\star	\star				\star	\star		$\star \star \star \star \star$
89	6	23.001	CSAH	23	US 10	CSAH 23 (190th St S)		\star	\star					\star	\star	\star	$\star \star \star \star \star$
92	7	26.003	CSAH	26	US 75	CSAH 26 (90th Ave N)		\star	\star		\star			\star	\star		$\star \star \star \star \star$
101	8	26.012	CSAH	26	MN 32	CSAH 26 (Front St)	\star	\star	\star		\star			\star			$\star \star \star \star \star$
110	9	31.004	CSAH	31	US 10	CSAH 31 (230th St)	\star	\star	\star					\star		\star	$\star \star \star \star \star$
115	10	34.001	CSAH	34	US 75	CSAH 34	\star	*	\star					*	*		$\star \star \star \star \star$

See Appendix D for complete table of prioritized locations.
Notes: ${ }^{\text {a }}$ Units of measure differ. Entering ADT is vpd, cross product is vpd ${ }^{2}$ CRSP 2 ID Example: 1.001: 1 = Route Number 1; 001 = First Intersection

Table 4-10. Urban Segment Prioritization - Example Table

List No.	Project Page No.	CRSP 2 ID	Route System	Route No.	Segment Start Description	Segment End Description	Length [Miles]	$\begin{aligned} & \text { ADT } \\ & \text { [vpd] } \end{aligned}$	Context Zone	Speed Limit	Lane Width	Edgeline Striping	Parking	ADT	Access Density	Cross Section	Edge Risk	Shoulder Width	Total Stars
3	1	3.001	CSAH	3	Intersection of CSAH3/US 10 and 11th St N	Intersection of 11th St N and 2nd Ave N	0.14	4600	\star	\star				\star				\star	* * \star *
1	2	3.002	CSAH	3	Intersection of CSAH3/11th St N and 2nd Ave N	Intersection of CSAH 96 and MN 22	4.30	5583					\star	\star				\star	$\star \star \star$
2	3	9.001	CSAH	9	Intersection of CSAH9/US 10 Frontage Rd and CSAH 9	Intersection of 28th Ave N and 40th St N	2.00	1540		\star					\star				* \star
6	4	78.003	CR	78	Intersection of CR78 and CSAH 72	Intersection of 2nd Ave SE and Main St S	1.30	330		\star					\star				* \star
7	5	20.001	CSAH	20	Intersection of CSAH20/47th Ave NW and 70th Ave NW	. 16 Miles West of Intersection of 9th St N and 70th Ave N	0.86	340		\star		\star							* \star
8	6	52.008	CSAH	52	738 ft North of Intersection of CSAH52/34th Ave S and CSAH 52	Intersection of I-94 and CSAH 52	0.68	6000		\star				\star					$\star \star$
4	7	7.002	CSAH	7	. 06 Miles South of Intersection of CSAH7/41st Ave S and 40th St S	Intersection of MN 52 and 40th St S	0.52	1950		\star									\star
5	8	22.001	CSAH	22	. 20 Miles West of Intersection of CSAH22/4th St NW and MN 22	Intersection of US 75 and MN 22	2.17	4333						\star					\star

See Appendix D for complete table of prioritized locations.

Note: CRSP 2 ID Example: 1.001: 1 = Route Number 1; 001 = First Segment

Table 4-11. Urban Intersection Prioritization Vehicle Related - Example Table

List No.	Project Page No.	CRSP 2 ID	Route System	Route No.	Major Approach Name	Minor Approach Name	Context Zone	Traffic Control Device	Total Entering ADT or Cross Product ${ }^{\text {a }}$	Leg Configuration	Major Division Type	Alignment Skew [Degrees]	Adjacent Commercial Development	Major/Minor Approach Speed Limit	Major Approach Left Turn Lane Phasing	Major Approach Turn Lane Configuration	Total Stars
3	1	3.002	CSAH	3	MSAS 115 (1st Ave N)	CSAH 3 (11th St N)	\star	\star	\star	\star	\star				\star	\star	$\star \star \star \star \star \star \star$
2	2	3.001	CSAH	3	US 10	CSAH 3	\star	\star	\star	\star					\star	\star	$\star \star \star \star \star \star$
14	3	9.001	CSAH	9	US 10	CSAH 9			\star	\star	\star		\star	\star		\star	$\star \star \star \star \star \star$
10	4	52.013	CSAH	52	MSAS 128 (30th Ave S)	CSAH 52		\star	\star	\star	\star				\star	\star	$\star \star \star \star \star \star$
7	5	45.001	CSAH	45	US 10 (Center Ave W)	CSAH 45 (Main St S)		\star	\star	\star					\star	\star	$\star \star \star \star \star$
1	6	1.001	CSAH	1	CSAH 1 (Broadway St NW)	CSAH 22 (Wall Street Ave N)				\star		\star		\star			$\star \star \star$
9	7	52.012	CSAH	52	CSAH 52	MSAS 138 (40th Ave S)				\star		\star		\star			$\star \star \star$
15	8	75.001	CR	75	US 75 (8th St S)	MSAS 146 (50th Ave S)	\star			\star				\star			$\star \star \star$
5	9	3.005	CSAH	3	CSAH 3 (11th St N)	MSAS 129 (15th Ave N)			\star	\star							$\star \star$
6	10	3.006	CSAH	3	CSAH 3 (11th St N)	CSAH 18 (28th Ave N)						\star		\star			$\star \star$

See Appendix D for complete table of prioritized locations.
Notes: ${ }^{\text {a }}$ Units of measure differ. Entering ADT is vpd, cross product is vpd^{2}. CRSP 2 ID Example: 1.001: 1 = Route Number 1; 001 = First Intersection

Table 4-12. Urban Intersection Prioritization Pedestrian/Bike Related - Example Table

List No.	Project Page No.	CRSP 2 ID	Route System	Route No.	Major Approach Name	Minor Approach Name	Traffic Control Device	Total Entering ADT	Adjacent Commercial Development	Max Number of Lanes Crossed	Presence of Sidewalk	Pedestrian Crossing Type	Total Stars
2	1	3.001	CSAH	3	US 10	CSAH 3	\star	\star		\star	*	*	$\star \star \star \star \star$
7	2	45.001	CSAH	45	US 10 (Center Ave W)	CSAH 45 (Main St S)	\star	\star		\star		*	$\star \star \star \star$
3	3	3.002	CSAH	3	MSAS 115 (1st Ave N)	CSAH 3 (11th St N)	\star	\star		\star		\star	$\star \star \star \star$
14	4	9.001	CSAH	9	US 10	CSAH 9		\star	\star	\star	\star		$\star \star \star \star$
10	5	52.013	CSAH	52	MSAS 128 (30th Ave S)	CSAH 52	\star			\star	\star	\star	$\star \star \star \star$
8	6	45.002	CSAH	45	US 10 (Center Ave E)	CSAH 45 (7th St SE)				\star	\star		$\star \star$
12	7	7.009	CSAH	7	CSAH 7 (40th St S)	MSAS 138 (40th Ave S)				夫	\star		$\star \star$
5	8	3.005	CSAH	3	CSAH 3 (11th St N)	MSAS 129 (15th Ave N)		\star			\star		^ \star
1	9	1.001	CSAH	1	CSAH 1 (Broadway St NW)	CSAH 22 (Wall Street Ave N)					\star		\star
9	10	52.012	CSAH	52	CSAH 52	MSAS 138 (40th Ave S)					*		\star

See Appendix D for complete table of prioritized locations.
Note: CRSP 2 ID Example: 1.001: 1 = Route Number 1; 001 = First Intersection

5.0 Beyond Infrastructure - County Highway Collaboration to Improve Local Road Safety

The focus of CRSP is to identify recommended priority safety projects at priority site locations within the County highway department's area of responsibility-namely, roadway infrastructure or engineering. However, the CRSP 2 process and this Plan recognize that severe traffic crashes are often largely due to poor driving behavior such as willful disregard for traffic laws and traffic control devices (e.g., texting while driving, not stopping at stop signs, red-lightrunning, speeding). Consequently, infrastructure safety improvements (e.g., rumble strips, improved intersection signing, etc.) are enhanced when deployed as part of a comprehensive and community-wide traffic safety approach. This section of the Plan looks beyond infrastructure safety improvements to guide county engineering staff to further engage with Regional TZD efforts through interdisciplinary collaboration to improve safety on county roads.

Traffic crashes are complex occurrences that often have multiple crash contributors. Traffic crashes may result from any combination of overlapping crash factors including the roadway or driving environment, the vehicle, and driver behavior. Figure 5-1 illustrates the complex interrelationship among these three crash contributors.

Crash Causation Factors

Figure 5-1. Crash Causation Factors ${ }^{1}$
Source: Human Factors and Highway Safety, FHWA Office of Safety Programs

[^0]These crash causation factors indicate that 93 percent of traffic crashes are due, in part, to driver behavior. Research supports, and CRSP 2 workshop participants across the state observed, that driver inattention/distractions, driver decision errors/poor judgment, and poor driver performance are primary factors contributing to traffic crashes (NHTSA, 2015a).
Minnesota statewide crash data from 2016 through 2020 was reviewed during CRSP 2 and revealed the following crash factors for the county road system.

- 48 percent Lane Departure while operating a motor vehicle
- 47 percent Intersection Related
- 15 percent Unbelted Motorists
- 28 percent Impaired Driver
- 11 percent Inattentive/Distracted Driver
- 20 percent Speed Related

The risk factors and their percentages, when added together, exceed 100 percent because severe crashes typically involve multiple overlapping factors working in unison to contribute to the crash (e.g., an impaired driver who was driving too fast and departed his lane). In addition to infrastructure safety needs, CRSP 2 workshop participants discussed common themes and expressed concern about the growing number of drivers who:

- Use their smartphone
- Drive under the influence of alcohol and drugs
- Are/have unbelted motorists
- Drive at unsafe speeds
- Fail to stop or yield at stop-through intersections

Minnesota's county highway staff recognizes that engineering and infrastructure investments alone will not eliminate all fatal and severe crashes until motorists also make safer choices. Therefore, county road safety efforts must reach beyond infrastructure or engineering safety strategies and actively support a comprehensive, multi-disciplinary approach to road safety. This approach includes, but is not limited to, effective local traffic law enforcement, public education that touts the risks associated with poor driving choices, and emergency medical responses to effectively treat and transfer crash victims to the appropriate level of hospital care. Leveraging local infrastructure strategies with driver behavior-related safety strategies strengthens the safety impact of county efforts to reduce severe crashes.

5.1 County Highway Engineering Coordination with Minnesota Toward Zero Deaths Program

To foster interdisciplinary cooperation and engagement at the state, regional, and local level, the statewide Minnesota TZD Program employs an integrated approach of engineering, enforcement, education, emergency medical and trauma services, and more (e.g., supportive and informed judicial staff and strong traffic safety legislation) to move Minnesota toward its zero fatality vision. In addition to the statewide TZD Program efforts, regional partnerships created in eight Minnesota geographic areas promote local-level TZD efforts. Each Regional TZD partnership has a
local steering committee, co-led by MnDOT and State Patrol District personnel, to foster cooperation, establish safety priorities and initiatives, and leverage resources.

Minnesota's 87 counties are encouraged to collaborate with local driver-behavior safety partners and with the county's Regional TZD Program Coordinator to improve safety on local roadways. See Appendix E for Regional TZD Coordinator contact information.

5.2 Collaborations to Strengthen Local Road Safety

The following are a few examples of infrastructure-based safety strategies enhanced through interdisciplinary TZD collaboration.

- Cooperatively conduct county road safety presentations with the assistance of local law enforcement and local safety coalition members. Extend invitations to local law enforcement and safety coalition members to cooperatively participate in road safety presentations for county board or other public meetings on crash-causation and trends, effective safety countermeasures, and local support needed. Safety presentations that include behavioral safety partners reinforce awareness that preventing roadway deaths cannot be achieved through infrastructure improvements alone but require a comprehensive, interdisciplinary approach.
- Deploy Lane Departure infrastructure safety strategies coupled with enhanced enforcement and public outreach. To maximize the expected safety benefit of the Lane Departure safety strategies - such as centerline and edgeline rumble or mumble strips, high visibility pavement markings, and adding or widening edgelines - integrate increased enforcement presence at targeted, high-risk locations and timeframes. Coupling infrastructure strategies with additional enforcement, along with public media outreach about the problem/risk, infrastructure deployment and the added enforcement, will improve safety and reduce risky driver behavior by strengthening the public's perceived risk of being stopped.
- Cooperatively deploy roving vehicle speed display signs, with extra enforcement, to reduce speed. Speed is a persistent contributor to traffic deaths on Minnesota roads and reductions in speed related crashes have proven difficult. Roving dynamic speed display signs are changeable message signs activated by radar, or other speed-sensing devices, that display an approaching driver's traveling speed. This driver feedback in conjunction with visible enforcement puts the driver on notice to slow down. Deployment of dynamic speed display signs to reduce speed requires the cooperative effort of highway agencies and law enforcement as well as local media to inform the public.
- Support the expanded use of red light running confirmation lights coupled with enhanced enforcement. To reduce the most common type of serious crash at signalized intersections (right-angle crashes), an innovative, low-cost red light running confirmation enforcement light enables one officer to monitor an intersection from a downstream location to directly observe red light running violations and issue citations more effectively and safely without requiring pursuit through the intersection. Red light running confirmation lights require only one officer and, because the confirmation lights come on the same instant as the red light of the signal, officers spend less time in court. Red light running confirmation lights require
strong collaboration between county engineering and local law enforcement. In addition, public education and media outreach about the red light running confirmation lights, with supporting enforcement, deters drivers from high-risk red light running.
- Consider the use of road safety audits and other crash analysis approaches to gain postcrash perspectives of severe crash causation and potential safety improvements. Although a cornerstone of the CRSP 2 process is the systemic analyses of roadway risk factors contributing to severe crashes and to proactively apply a safety treatment to priority locations to prevent a severe crash, if a fatal or serious injury crash occurs, consider engaging a multi-disciplinary safety team to share perspectives. Local safety stakeholders representing engineering, enforcement, education, and education outreach or local TZD Safe Road Coalition members can offer valuable insight to both the roadway and driver behavior components of a severe crash, its causation, and interdisciplinary approaches to improving the roadway safety and maximizing the impact of infrastructure safety strategies.

Although the focus of the CRSPs is to identify priority infrastructure safety investments at highrisk locations, county highway staff recognize the importance of reaching beyond infrastructure and implementing a collaborative, multi-disciplinary approach to improving road safety, an approach that aligns with the statewide Minnesota TZD Program and the Minnesota SHSP.

6.0 Safety Project Development and Recommended Projects

This CRSP document is developed with a focus on proven effective strategies that can be widely implemented at low-cost and at several locations with a higher probability of risk of severe crashes. A systemic deployment of strategies is implemented to address risk of potential for severe crashes where the crash densities are too low to warrant a spot analysis. In Minnesota, the crash densities are approximately 0.01 severe crashes per mile per year across the county roadway system, which is not statistically significant when observed individually. In the CRSP 2 approach, the presence of a crash is viewed as complimentary to the risk analysis rather than a sole influencer. Additionally, since HSIP provides limited funding, low-cost strategies allow for wider deployment and treatment of more at-risk locations on the county system.

6.1 Safety Project Development Technical Process

The first step in the safety project development process involved documenting existing roadway and traffic volume characteristics of each candidate location and then working through a checklist that considers how these features influence selection of a particular recommended strategy. After the initial check, the second step is developing a decision tree for candidate locations. Multiple iterations and refinement went into the development of the six unique decision trees for CRSP 2 that helped guide safety strategies for:

- Rural Segments (See Figure 6-1)
- Rural Curves (See Figure 6-2)
- Rural Intersections (See Figure 6-3)
- Urban Segments (See Figure 6-4)
- Urban Intersections - Vehicle Related (See Figure 6-5)
- Urban Intersections - Ped/Bike Related (See Figure 6-6)

The final step in the technical process of updating the Clay CRSP involves developing a list of recommended safety projects - a specific infrastructure-based safety strategy for each of the identified high priority locations. The updating process for CRSP 2 is more complex and comprehensive than CRSP 1 because Clay County has already implemented many of the recommended safety projects identified in CRSP 1. Additionally, CRSP 2 has a large number of strategies that are eligible to compete for HSIP funding.

The process for safety project development utilizes a technical approach to limit subjectivity that could be exhibited when making countermeasure recommendations. Collaboration with County staff was also necessary so that the final lists of recommended projects will be the most impactful and reduce the associated risk and/or address prior crash history at high priority locations. Key points associated with the individual crash trees are described in the following paragraphs and illustrated in the accompanying figures.

6.2 Rural Segments

Preventing Lane Departure crashes, both single vehicle run-off the road and cross center headon collisions, is the primary focus of safety project development along rural segments. Crash data indicates that single-vehicle crashes are over-represented where traffic volumes are between 500 and 2,000 vehicles per day and multiple Vehicle crashes are over-represented where traffic volumes are 1,250 vehicles per day and greater. This suggests, for single-vehicle related crashes, implementing road edge improvements such as enhanced edgelines or edge/shoulder rumble strips along lower volume segments would be the most beneficial to address the associated risk. As for multi-vehicle related crashes, a combination of edge and centerline improvements such as center rumble strips or center buffers should be implemented along higher volume segments.

Other factors considered include lane width and the presence of noise sensitive receivers (residences, schools, etc.). Implementation of edge rumble strips results in the perception that the width of the road has been narrowed which can increase complaints about vehicle noise in a more residentially dense area. One experimental countermeasure that can improve road edge safety as well as reduce the noise from vehicles striking rumble strips is a newer technology called sinusoidal rumble strips, or mumble strips. Since this is still an experimental strategy and not widely deployed, further research and performance evaluation should be considered before wide deployment. If lane widths are 12 feet, edge rumble strips are recommended. However, if lane widths are less than 12 feet, then enhanced edgelines are recommended, which can consist of, for example, 6 -inch edgelines or embedded wet-reflective pavement markings.
Project implementation typically focuses lower cost strategies (enhanced edgelines) on roadways with less volume where crash densities are low and the highest cost strategies (center buffers) are reserved for application along only the highest volume roadways.

6.3 Rural Curves

Preventing Lane Departure crashes is the primary focus of rural curve safety project development. Safety literature and Minnesota's crash data indicates that the risk of a Lane Departure crash in curves decreases with increasing length of curve radius. However, reconstructing curves to increase their radius typically costs between \$500,000 and \$1,000,000 per curve. There are approximately 30,000 curves along Minnesota's county road system; therefore, reconstruction was not considered a feasible strategy to implement statewide due to limited funding. Instead, a number of lower cost safety strategies for curves were identified and include enhanced warning signs to improve navigation through curves, address slippery surfaces in curves with a history of crashes related to adverse pavement conditions, clear zone maintenance to reduce the severity of crashes when vehicles run off the road, and convert curves with multiple-T intersections to single-T intersections.

When deciding on a package of enhanced warning signs, the primary factor considered is the speed differential between the posted speed limit on the curve approach and either the posted advisory speed in the curve or an inferred advisory speed computed using a formula that accounts for curve radius, super-elevation, and pavement friction. A speed differential of 5
miles per hour typically results in use of an advanced curve warning sign (if not already inplace), 10 miles per hour suggests the use of an advanced sign plus a speed advisory, and a 15 mile per hour differential suggests the use of an advanced sign, a speed advisory, and chevrons.

If the curve has a radius in the critical range and has a visual trap, chevrons would be recommended regardless of the speed differential.

This page intentionally left blank

This page intentionally left blank

Figure 6-2. Rural Curve Safety Project Decision Tree

6.4 Rural Intersections

In Minnesota, a right-angle collision is the most common type of severe crash at rural intersections. County-selected strategies for this collision type have been very effective at mitigating these crashes. Strategies have included enhancing intersection related traffic signs and pavement markings, adding street lights, providing a dynamic warning system, and geometric upgrades (turning lanes, J-Turn intersections, and roundabouts). Implementing these strategies range from a few thousand dollars for upgraded traffic signs and pavement markings to around $\$ 1$ million for J-Turn intersections and roundabouts. The volume of traffic through the intersection and the roadway geometry were key factors considered when assigning a particular strategy to a specific intersection.

The crash analysis indicated that rural intersections with lower traffic volumes have fewer severe crashes than comparable intersections with higher volumes. Therefore, projects with lower costs were focused on for at-risk intersections with a variety of traffic volumes while projects of medium to higher costs were focused on for at-risk intersections with higher traffic volumes.

The cross section and geometry of the major roadway were also considered during project development. Since J-Turn intersections are most appropriately applied at intersections where the mainline has a divided cross section, they were only considered at locations where county roadways intersect with four-lane divided state highways. Application of rural roundabouts were only considered at intersections where the volume cross product (multiplication of major approaching volume with minor approaching volume) was equal to or exceeded 40 million. In other words, if an existing STOP controlled intersection met or exceeded the traffic volume that warrants a traffic signal, the project team recommended implementing a roundabout.

The occurrence of a prior severe crash was a prerequisite for suggesting higher cost strategies as a way of limiting the number of candidate locations consistent with the limitations in available safety funding. Additionally, to recommend a feasible number of projects with an appropriate associated cost, higher cost strategies were reserved for unique situations due to the limited amount of transportation safety funding available.

6.5 Urban Segments

The most common type of severe crashes along urban roadway segments are two-vehicle, rearend and head-on crashes. The most commonly recommended project involves separating opposing traffic lanes and using this space to accommodate left-turning vehicles by converting wide two-lane or four-lane undivided roadways to either three-lane or five-lane cross sections. Key factors that were developed through the analysis that were considered during project development included roadway cross section, the volume of traffic, and access density.

This page intentionally left blank

This page intentionally left blank

Figure 6-4. Urban Segment Safety Project Decision Tree

This page intentionally left blank

6.6 Urban Intersections - Vehicle Related Crashes

In Minnesota, a right-angle collision between two vehicles is the most common type of severe crash at urban intersections. County-selected safety strategies at urban intersections include improving intersection geometry at unsignalized locations since installing traffic signals is not a safety strategy, adding confirmation lights to assist law enforcement to more efficiently address red light running, upgrading signal hardware, and converting to signalized J-Turn at locations already controlled by traffic signals.

Key considerations include the current type of intersection control, the volume of traffic through the intersection, the cross section of the major roadway, and the presence of a prior severe crash.

6.7 Urban Intersections - Pedestrian/Bike Related Crashes

In urban areas, the majority of severe pedestrian/bike related crashes occur at intersections and the majority of these occur at intersections controlled by traffic signals. This suggests that traffic signals by themselves are not a safety strategy for pedestrians and bicyclists. Primary objectives for this type of project development include:

- Avoiding the addition of traffic signals at unsignalized intersections and instead focusing on reducing the crossing distance that pedestrians and bicyclists must traverse by adding curb extensions or median refuge islands.
- Adding pedestrian activated devices such as rectangular rapid flash beacons and high intensity activated crosswalk beacons.
- Adding proven effective strategies at already signalized intersections, such as countdown timers and a leading pedestrian interval, which provides pedestrians with a 3 to 5 second head start before providing vehicles with a green light.

Key factors considered during the project development process include intersection control, the traffic volume, and the roadway cross section.

This page intentionally left blank

This page intentionally left blank

6.8 Recommended Safety Project Overview

The systemic risk assessment process identified at-risk locations that were considered priorities for safety project development and decision trees document the process that considered roadway features, traffic volumes, and the presence of prior crashes. This resulted in identification of a recommended safety project(s). An overview of the recommended projects is provided in the following paragraphs and summarized in Table 6-1. The full list of recommended projects can be found in Appendix F and the corresponding maps with project locations can be found in Appendix G.

- Rural Segments: 76 projects/\$1,675,500
- Buffer Between Opposing Lanes
- Shoulder Paving and Safety Edge
- Centerline Rumble Strip
- Edgeline Rumble Strip
- Shoulder Rumble Strip
- Enhanced Edgeline
- Rural Curves: 7 projects/\$109,000
- Clear Zone Enhancements
- Curve Warning Sign
- Speed Advisory Signs
- Chevrons or Arrow Board
- Rural Intersections: 55 projects/\$1,191,000
- Review Signs and Markings
- Thru-stop to all way stop/yield
- Lighting
- LED Stop Signs
- J-Turn
- Urban Segments: 1 project/\$1,549,500
- Access Management
- Urban Intersections (Vehicle Related): 6 projects $/ \$ 30,500$
- Confirmation Lights
- Lighting
- Upgrade Signs and Pavement Markings
- Urban Intersections (pedestrian/bike related): 17 projects/\$161,000
- Median Refuge Island
- Curb Extensions
- Pedestrian Countdown Timer
- Leading Pedestrian Interval
- Upgrade Signal Hardware and review and revise signal timing and operations

Table 6-1. Summary of Clay County Recommended Safety Projects

Project Type Category	Number of Projects	Estimated Cost
Rural		
Segments	76	$\$ 1,675,500$
Curves	7	$\$ 109,000$
Intersections	$\underline{138}$	$\$ 1,191,000$
Total Rural		$\$ 3.0$ million
Urban	1	$\$ 1,549,500$
Segments	6	$\$ 30,500$
Intersections (Vehicle)	17	$\$ 161,000$
Intersections (Ped/Bike)	$\underline{24}$	$\$ 1.7$ million
Total Urban	162	$\$ 4.7$ million
Total		

One additional task that was completed as part of the overall safety project development process for Clay County was compiling project information in a single sheet in order to streamline the process for counties applying for HSIP funding. The HSIP submission form (Figure 6-7) includes a description of the location, crash history, a summary of the systemic risk factors, a list of alternative strategies considered, identification of the recommended project, and estimated project cost. HSIP Submission forms for every recommended project can be found in Appendix H .

Rural Segment Project on CSAH 1

Roadway Information

Crash Information				
5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	2	0	1	0
Density (per mile per yr):	0.12	0	0.06	0
Rate (per MVM):	0.26	0	0.13	0

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 9,846.08$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 9,846.08$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Enhanced Edgeline:		Proactive	$\$ 2,700$	per mile	1

\square Date: 3/29/2023

Figure 6-7. Sample Highway Safety Improvement Program Submission Form

This page intentionally left blank

7.0 References

AAA Foundation for Traffic Safety (AAA). 2018. 2017 Traffic Safety Culture Index. https://aaafoundation.org/wp-content/uploads/2018/03/TSCI-2017-Report.pdf.

CH2M HILL and SRF Consulting Group, Inc. 2014. Minnesota County Roadway Safety Plans.
Fatality Analysis Reporting System. 2022. Detailing the Factors Behind Traffic Fatalities on our Roads. https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars.

Minnesota Department of Transportation (MnDOT). 2020. Strategic Highway Safety Plan 20202024. http://www.dot.state.mn.us/trafficeng/safety/shsp/

Minnesota Local Road Research Board (LRRB). 1998. Statistical Relationship Between Vehicular Crashes and Highway Access. Report Number MN/RC - 1998-27. August.

National Cooperative Highway Research Program (NCHRP). 2003-2009. "NCHRP Report 500: Guidance for Implementation of the AASHTO Strategic Highway Safety Plan." The National Academies of Sciences, Engineering, Medicine. http://www.trb.org/Main/Blurbs/152868.aspx.

National Highway Traffic Safety Administration (NHTSA). 2020. Countermeasures that Work: A Highway Safety Countermeasure Guide for State Highway Safety Offices.
https://www.nhtsa.gov/sites/nhtsa.gov/files/2021-09/Countermeasures-
10th 080621 v5 tag.pdf
National Highway Traffic Safety Administration (NHTSA). 2015b. Traffic Safety Facts. A Brief Statistical Summary. DOT HS 812115.
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
U.S. Federal Highway Administration (FHWA). n.d. Highway Safety Manual. https://safety.fhwa.dot.gov/rsdp/hsm.aspx.
U.S. Federal Highway Administration (FHWA). 2022. Crash Modification Factor (CMF) Clearinghouse. http://safety.fhwa.dot.gov/tools/crf/resources/.
U.S. Federal Highway Administration (FHWA). 2020. Highway Statistics 2020. https://www.fhwa.dot.gov/policyinformation/statistics/2020/.

This page intentionally left blank

Appendix A - List of
 Analyzed Locations

This page intentionally left blank

This page intentionally left blank

List No.	CRSP 210	$\begin{aligned} & \text { Route } \\ & \text { System } \end{aligned}$	$\begin{gathered} \text { Route } \\ \text { No. } \end{gathered}$	Start Description	End Description	Speed Limit	Radius [feet]	Area Type	ADT [vpd]	$\begin{gathered} \text { Lane } \\ \text { Width } \\ \text { [feet] } \end{gathered}$	Shoulder Type	Outside Shoulder Width [feet]	Total Cross Section Width [feet]	Adjacent Intersection	Visual Trap	Lighting	Outside Edge Risk
1	1.001	${ }^{\text {CSAH }}$	1	. 15 Miles South of I Itersection of CSAH1/54th Ave NW and 4th St NW	Intersection of 90th Ave NW and Broadway St NW	5	578	Rural	2,250	12	Paved	8	32	None	None	None	1
2	1.002	CSAH	1	North of intersection of Wall St Ave NW / Broadway st NW	Intersection of Wall St Ave NW / Broadway st NW	55	${ }^{841}$	Rural	920	12	Paved	0	32	Intersection	None	None	1
3	10.001	CSAH	10	Intersection of CSAH10/MN 52 and 90th Ave S	. 35 Miles West of Intersection of MN 9 and CSAH 10	55	1030	Rural	1,100	12	Paved	8	38	None	None	None	1
4	10.002	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	55	1147	Rural	3,300	12	Paved	6	40	Intersection	None	None	1
	10.003	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of SSAH 10 and 110 Ave	55	1170	Rural	3,300	12	Paved	6	40	Intersection	None	None	
6	10.004	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	55	2944	Rural	3,300	12	Paved	0	40	None	None	None	2 C
7	10.006	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	55	1291	Rural	2100	12	Paved	0	40	Intersection	None	None	2 C
8	10.007	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of SSAH 10 and 110 Ave	55	2877	Rural	2,100	12	Paved	0	40	None	None	None	
9	10.008	CSAH	10	1396 tt East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	55	1022	Rural	2,100	12	Paved	0	40	None	None	None	2 C
10	10.009	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	55	831	Rural	2,100	12	Paved	0	40	None	None	None	
11	10.010	CSAH	10	1396 ft East of Intersection of CSAH11/MN 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	55	806	Rural	2,100	12	Paved	0	40	None	Present	None	1
12	11.001	${ }_{\text {cssah }}$	11	Intersection of CSAAH11/CSAH 50 and CSAH3	704 It South of intersection of 15 St St sand CSAH 11	55 55	1140	Rural	25	12	${ }^{\text {Paved }}$	10	${ }_{4}^{44}$	Intersection	None	None	1
13 14	11.002	${ }_{\text {csah }}$	11	Intersection of CSAH11/US 10 and 7 7oth St N		55	1874	Rural	1,800 1,800	12	${ }_{\text {Paved }}$	10 10	58 58	Intersection	None None	None	1
15	${ }^{11.004}$	${ }_{\text {csah }}$	11	Intersection of CSSAH11/7Oth St 1 and 28 Sth Ave N	In ${ }^{\text {In }}$ Itersection of 7 Oth 5 St N and 90th Ave N	55 5	1868	Rural	1,800 1,200	12	${ }^{\text {Paved }}$	10	${ }_{36}^{58}$	None	None	None	1
16	11.005	CSAH	11	Intersection of CSAH11/70th St N and 28th Ave N	Intersection of 70th St N and 90th Ave N	55	1125	Rural	55	12	Paved	12	36	Intersection	None	None	1
17	11.006	CSAH	11	Intersection of SSAH11/70th St N and 28th Ave N	Intersection of 70th St N and 90 th Ave N	55	1872	Rural	1,200	12	Paved	5	36	None	None	None	1
18	11.007	CSAH	11	Intersection of SSAH11/70th St N and 28th Ave N	Intersection of 70 th 5 S N and 90th Ave N	55	1834	Rural	1,200	12	Paved	5	36	None	None	None	1
19	11.008	CSAH	11	Intersection of CSAH11/70th St N and 28th Ave N	Intersection of 70th St N and 90th Ave N	55	1154	Rural	1,200	12	Paved	5	36	None	None	None	
20	11.009	CSAH	11	Intersection of CSAH11/70th St N and 28th Ave N	Intersection of 7oth 5 S N and 90th Ave N	55	1127	Rural	1,200	12	Paved	5	36	None	None	None	1
21	12.001	CSAH	12	. 08 Miles West of Intersection of CSAH12//7t 5 S 5 W and CSAH 74	Intersection of US 75 and 6 Oth Ave S	55	2976	Rural	6,500	12	Paved	8	38	Intersection	None	None	1
22	14.001	CSAH	14	Intersection of CSAH114/70th St 5 and 28th Ave S	Intersection of 100 h 5 S 5 and 28 th Ave S	55	500	Rural	1,350	12	Paved	12	44	Intersection	None	None	
23	14.002	CSAH	14	Intersection of CSAH14/70 th St 5 and 28th Ave S	Intersection of 100 th 5 S 5 and 28 th Ave S	55	973	Rural	1,350	12	Paved	10	44	None	None	None	1
24	19.001	CSAH	19	Intersection of CSAH19/1th St NE and 11th 5 S N	Intersection of 110 th 5 t N and 28th Ave N	55	1221	Rural	455	12	Paved	4	32	None	None	None	25
25	19.002	CSAH	19	1040 ft North of 80th Ave N and CSAH 19	Intersection of 90th Ave N and CSAH 19	55	1503	Rural	50	11	None	0	22	None	None	None	25
26	22.001	CSAH	22	. 20 Miles West of Intersection of CSAH22//4th St NW and MN 22	Intersection of US 75 and MN 22	55	1197	Rural	4,650	12	Paved	8	40	intersection	None	None	
27	22.002	CSAH	22	. 20 Miles West of Intersection of CSAH22/4th St NW and MN 22	Intersection of US 75 and MN 22	55	860	Rural	4,650	12	Paved	12	40	None	None	None	1
28	26.001	CSAH	26	. 10 Miles West of intersection of CSAH26/15th St SW and 90th Ave NW	Intersection of 90th Ave N and 122 StN	55	1722	Rural	2,850	12	Paved	9	44	tersection	None	None	1
29	26.002	CSAH	26	. 10 Miles West of Intersection of SSAH26/15th St SW and 90th Ave NW	Intersection of 90th Ave N and 120 St N	55	2416	Rural	2,850	12	Paved	9	44	None	None	None	1
30	3.001	CSAH	3	Intersection of CSAH3/11th St N and 2nd Ave N	Intersection of CSAH 96 and MN 22	40	1169	Rural	2,900	12	Paved	0	24	Intersection	None	None	1
31	31.001	CSAH	31	. 08 Miles North of intersection of CSAH31/CR 127 and CSAH 19	$229 \mathrm{ft} \mathrm{South} \mathrm{of} \mathrm{intersection} \mathrm{of} \mathrm{Roger} \mathrm{St} \mathrm{and} \mathrm{230th} 5$ t	55	806	Rural	300	12	Paved	4	32	Intersection	None	None	25
32	31.002	CSAH	31	. 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19	229 ft South of intersection of Roger St and 230 St st	55	959	Rural	470	12	Paved	6	32	Intersection	Present	None	
33	31.003	CSAH	31	. 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19	229 ft south of intersection of Roger 5 tand 230 St 5 t	55	952	Rural	470	12	Paved	6	32	None	None	None	1
34	31.004	CSAH	31	. 08 Miles North of intersection of CSAH31/CR 127 and CSAH 19	229 ft South of intersection of Roger St and 230th St	55	2032	Rural	970	12	Paved	6	32	None	None	None	
35	31.005	CSAH	31	. 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19	229 ft South of intersection of Roger 5 tand 230 St st	55	1042	Rural	970	12	Paved	6	32	Railroad	None	None	2 C
36	31.006	CSAH	31	. 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19	$229 \mathrm{ft} \mathrm{south} \mathrm{of} \mathrm{intersection} \mathrm{of} \mathrm{Roger} \mathrm{Stand} \mathrm{230th} \mathrm{St}$	55	1230	Rural	970	12	Paved	6	32	Railroad	None	None	2 C
37	33.001	CSAH	33	120 ft South of intersection of CSAH33/4th St and CSAH 33	Intersection of 90th Ave N and 230th 5 t N	55	956	Rural	1,000	12	Paved	10	44	Intersection	None	None	
38	33.022	CSAH	33	120 ft South of Intersection of CSAH33/4th St and CSAH 33	Intersection of 90 th Ave N and 230th 5 N N	55	975	Rural	1,000	12	Paved	10	44	Intersection	None	None	
39	34.001	CSAH	34	Intersection of CSAH34/US 75 and 160th Ave N	3183 ft West of intersection of MN 9 and 7 th St	55	2218	Rural	325	12	Paved	8	40	None	None	None	1
40	35.001	CSAH	35	Intersection of CSAH35/180th Ave S and 275th St S	Intersection of MN 34 and 270 th 5 S	55	1841	Rural	265	12	Paved	4	32	None	None	None	25
41	35.02	CSAH	35	Intersection of CSAH35/1880th Ave S and 275th St S	Intersection of MN 34 and 270 th 5 S S	55	832	Rural	265	12	Paved	4	32	htersection	None	None	
42	35.003	CSAH	35	Intersection of CSAH35/180th Ave S and 275th Sts	Intersection of MN 34 and 270th Sts	55	823	Rural	265	12	Paved	4	32	None	None	None	25
43	52.001	CSAH	52	Intersection of CSAH52/CSAH 52 and CSAH 10	Intersection of MN 9 and CSAH 52	55	1184	Rural	1,350	12	Gravel	5	34	None	None	None	
44	52.02	CSAH	52	Intersection of CSAH52/CSAH 52 and CSAH 10	Intersection of MN 9 and CSAH 52	55	4638	Rural	1,350	12	Gravel	6	34	None	None	None	
45	52.003	CSAH	52	Intersection of CSAH52/CSAH 52 and CSAH 10	Intersection of MN 9 and CSAH 52	55	5879	Rural	1,450	12	Paved	5	34	None	None	None	1
46	52.004	CSAH	52	Intersection of CSAH52/CSAH 52 and CSAH 10	Intersection of MN 9 and CSAH 52	55	4474	Rural	1,450	12	Paved	5	34	Intersection	None	None	
47	52.005	CSAH	52	402 2t North of intersection of CSAH52 and 4th 5 N N	738 ft North of 34 th Ave S and CSAH 52	55	2392	Rural	4,200	12	Paved	8	40	Intersection	Present	None	
48	100.001	cr	100	$528 \mathrm{ft} \mathrm{North} \mathrm{of} \mathrm{Intersection} \mathrm{of} \mathrm{CR100/Howard} \mathrm{St} \mathrm{and} \mathrm{CR} 100$	Intersection of CR 100 and CR 102	55	404	Rural	60	10	None	0	20	Intersection	Present	None	${ }^{25}$
49	${ }^{100.002}$	${ }_{\text {cr }}^{\text {CR }}$	100 100	528 f North of Intersection of CR100/H ward St and CR 100	Intersection of CR 100 and CR 102	55 55	${ }^{663}$	Rural Rural	60 60	10	None	0	20	None	None	None	
50 51	100.003 100004	${ }_{\text {cR }}^{\text {CR }}$	100	528 f North of Intersection of CR100/H ward St and CR 100	Intersection of CR 100 and CR 102	$\begin{array}{r}55 \\ 55 \\ \hline\end{array}$	1910	Rural	60 60	10 10	None None	0	20 20	None None	None None	None	25 25 25
52	96.001	CR	96		Intersectiono of US 75 and CSAH 5	5	${ }_{821}$	Rural	590	12	None	\bigcirc	20 24	${ }_{\text {None }}^{\text {None }}$	${ }_{\text {None }}$ Present	None	25 25 25
53	96.002	CR	96	Intersection of CR96/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5	55	1685	Rural	3,000	12	Composite	3	24	Intersection	None	None	25
54	96.003	CR	96	Intersection of CR96/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5	55	2093	Rural	540	11	Gravel	1	22	None	None	None	25
55	96.004	CR	96	Intersection of CR96/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5	55	2119	Rural	540	11	Gravel	1	22	None	None	None	25

This page intentionally left blank

Rural Intersection List for Clay County

List No. 2	CRSP 210	$\begin{aligned} & \text { Route } \\ & \text { System } \end{aligned}$	$\begin{gathered} \text { Route } \\ \text { No. } \end{gathered}$	Major Approach	Minor Approach	Area Type	Context Zone	Total Entering ADT [vpd]	Volume Cross Product [vod 2 2]		Alignment Skew [Degrees]	Adjacent RR Crossing	$\begin{aligned} & \text { Adjacent } \\ & \text { currve } \end{aligned}$	Adjacent Development	$\begin{aligned} & \text { Previous stop } \\ & (>5 \mathrm{mi}) \end{aligned}$	Major Approach Speed limit	$\underset{\substack{\text { Majior } \\ \text { Approach Turn } \\ \text { Lane } \\ \text { Configuration }}}{ }$	к	A	в	c	PDO	Crash cost
1	1.002	CSAH	1	CSAH 1 (Broadway St NW)	T111 (70th Ave N)	Rural	Agriculure	1018	155625	x	0	None	None	None	<5	55	T	0	0	0	1	0	\$120,000
2	1.003	CSAH	1	CSAA 26 (90th Ave N)	CSAH 1 (Broadway St NW)	Rural	Agriculture	4870	55110000	¢	45	None	None	None	<5	55 55	TR	0	0	0	0	1	\$13,000
3	10.001	CSAH	10	CSAH 52	CSAH 10 (9oth Ave S)	Rural	Agriculture	3410	1652625	x	45	Present	None	None	>5	55	TR	0	0	0	0	1	\$13,000
4	10.002	CSAH	10	CSAH 10 (90th Ave S)	CR 68 (90th st S)	Rural	Agriculture	1115	16500	\times	0	None	None	None	<	55	T		0	0	-		\$0
5	10.003	CSAH	10	CSAH 10 (90th Ave S)	CSAH 17 (100th St S)	Rural	Agriculture	1185	93500	\times	0	None	None	None	>5	55	T	0	0	0	0	0	\$0
6	10.004	CSAH	10	CSAH 10 (90th Ave S)	CR 69 (110th St S)	Rural	Agriculture	1155	60500	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
7	10.005	CSAH	10	CSAH 10 (90th Ave S)	CSAH 21 (130th St S)	Rural	Agriculture	1210	121000	T	10	None	None	None	<	55	T	0	0	0	0	0	\$0
8	10.006	CSAH	10	CSAH 10 (90th Ave S)	$1-94$ (Ramp)	Rural	Agriculture	1880	858000	\times	5	None	None	None	<	55	T	0	0	0	0	1	\$13,000
9	10.007	CSAH	10	CSAH 10 (90th Ave S)	1.94 (Ramp)	Rural	Agriculture	2782	1768500	x	10	None	None	None	<5	55	T	0	0	0	0	1	\$13,000
10	10.008	CSAH	10	MN9	CSAH 10 (90th Ave S)	Small Town	Residential	3880	2842000	\times	40	None	None	None	>	60	TR	0	0	2		0	\$460,000
11	10.009	CSAH	10	CSAH 10 (90th Ave S)	CR 71 (70th Ave S)	Rural	Agriculture	3358	189750	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
12	10.010	CSAH	10	CSAH 10	CSAH 25 (200th St S)	Rural	Agriculture	3382	272250	\times	0	None	None	None	>5	55	T	0	0	0	0	0	\$0
13	10.011	CSAH	10	CSAH 10 (90th Ave S)	CSAH 31 (230th St S)	Rural	Agriculture	3842	1790250	\times	0	None	None	None	25	55	T	0	0		0	0	\$230,000
14	10.012	CSAH	10	CSAH 10 (90th Ave S)	CR 120 (240th St S)	Rural	Agriculture	3330	99000	\times	0	None	None	None	<5	55	T	0	0	0	0	0	\$0
15	10.013	CSAH	10	CSAH 10 (90th Ave S)	CR 121 (250th st S)	Rural	Agriculture	3335	115500	X	0	None	None	None	<	55	T	0	0	0	0	0	50
16	10.014	CSAH	10	CSAH 10 (90th Ave S)	CR 124 (260th St S)	Rural	Agriculure	3350	165000	x	0	None	None	None	<	55	T	0	0	0	-	0	\$0
17	10.015	CSAH	10	MN 32	CSAH 10 (90th Ave S)	Rural	Agriculture	3570	2349000	\times	45	None	None	None	>5	60	T	0	0	0	0	1	\$13,000
18	10.016	CSAH	10	CSAH 10 (90th Ave S)	CSAH 37 (280th St S)	Rural	Agriculture	2200	21000	X	0	None	None	None	25	55	T	0	0	0	0	0	\$0
19	11.001	CSAH	11	CSAH 11	CR 50	Rural	Agriculture	322	3875	T	0	None	Horizontal	None	<	55	T	0	0	-	0	0	\$0
20	11.002	CSAH	11	CSAH 11 (70th St S)	CR 51 (170th AVE S)	Rural	Agriculture	345	10850	\times	0	None	None	None	25	55	T	0	0	0	0	0	\$0
21	11.003	CSAH	11	CSAH 11 (70th St S)	CR 57 (140th Ave S)	Rural	Agriculture	595	24750	-		None	None	None	<	55	T	0	0	0	0	0	\$0
22	11.004	CSAH	11	CSAH 11 (70th St s)	CR 62 (120th Ave S)	Rural	Agriculture	590	22000	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
23	11.005	CSAH	11	CSAH 11 (70th St S)	CR 67 (1ststs)	Small Town	Residential	1320	144000	x	0	None	None	None	<	30	T	0	0	0	0	0	\$0
24	11.006	CSAH	11	CSAH 11 (Main St)	CSAH 52 (Holloway St)	Small Town	Residential	5185	4137000	-	0	None	None	None	25	30	T	0	0	0	0	0	S0
25	11.007	CSAH	11	CSAH 11 (70th St S)	CR 69 (70th Ave S)	Rural	Residential	745	37950	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
26	11.008	CSAH	11	CSAAH 11 (70th St s)	CSAH 12 (60th Ave S)	Rural	Agriculture	1970	829600	x		None	None	None	<	55	T	0	0	0	0	1	\$13,000
27	11.009	CSAH	11	CSAH 11 (70th St s)	CSAH 13 (50th Ave S)	Rural	Agriculture	1445	411450	x	0	None	None	None	<	55	T	0	0	0	0	0	50
28	11.010	CSAH	11	CSAH 11 (70th St S)	CR 76 (40th Ave S)	Rural	Agriculture	1552	78750	x	0	None	None	None	<	55	T	0	0	0	0	0	\$0
29	11.011	CSAH	11	CSAH 11	TH 94 Off-Ramp (South)	Rural	Agriculture	11235	27008750	T		None	Horizontal	None	<	55	TR	0	0	1	0	0	\$230,000
30	11.012	CSAH	12	CSAH 11	US 10 Offr-Ramp (North)	Rural	Agriculture	5550	675000	T	0	None	Horizontal	None	<	55	LT	0	0	0	0	0	S0
31	11.013	CSAH	11	CSAH 11 (70th St N)	CSAH 18 (28th Ave N)	Rural	Agriculture	3000	2160000	\times	0	None	None	None	25	55	TR	0	0	1	0	1	\$243,000
32	11.014	CSAH	11	CSAH 11 (70th st N)	CR 89 (43rd Ave N)	Rural	Agriculture	1845	81000	x		None	None	None	<	55	TR	0	0	0	0	0	\$0
33	11.015	${ }_{\text {csat }}$	11	CSAH 11 (70th St N)	CR 91 (57 th Ave)	Rural	Agriculture	1578	116250	\times	0	None	None	None	<5	55	TR	0	0	0	0	,	\$0
34	11.016	CSAH	11	CSAH 11 (70th st N)	CR 93 (70th Ave)	Rural	Agriculture	1230	36000	T	0	None	Horizontal	None	<	55	T	0	0	0	0	0	\$0
35	11.017	CSAH	11	CSAH 11 (70th St N)	CR 93 (70th Ave N)	Rural	Agriculture	1228	33000	T	0	None	None	None	<	55	TR	0	0	0	0	0	50
36	11.018	CSAH	11	CSAH 11 (70th st N)	CR 94 (80th Ave)	Rural	Agriculture	1232	39000	\times	0	None	None	None	<5	55	TR	0	0	0	0	0	\$0
37	11.019	CSAH	11	CSAH 11 (70th st N)	CSAH 26 (90th Ave N)	Rural	Agriculture	3540	2600000	-	0	None	None	None	25	55	TR	0	0	0	0	1	\$13,000
38	11.020	CSAH	11	CSAH 11 (70th St N)	CSAH 28 (110th Ave N)	Rural	Agriculture	960	70400	\times	0	None	None	None	<	55	T	0	0	0	0	0	50
39	11.021	CSAH	11	CSAH 11 (70th st N)	CR 108 (140th Ave N)	Rural	Agriculture	980	88000	x	0	None	None	None	<	55	T	0	0	0	0		\$0
40	11.022	CSAH	11	CSAH 11 (70th st N)	CR 107 (150 Oth Ave N)	Rural	Agriculture	895	13200	\times	0	None	None	None	<5	55	T	0	0	1	0	0	\$230,000
41	11.023	CSAH	11	CSAH 11 (70th St N)	CSAH $34(600$ St N)	Rural	Agriculture	1100	292994	x	0	None	None	None	25	55	T	0	0	0	0	0	\$0
42	11.024	CSAH	11	CSAH 11 (70th st N)	CR 106 (170th Ave N)	Rural	Agriculture	448	13488	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
43	11.025	CSAH	11	CSAH 11 (70th st N)	CR 70 (190th Ave N)	Rural	Agriculture	425	4150	T	0	None	None	None	<	55	T	0	0	0	0	0	\$0
44	12.001	CSAH	12	US 75 (8th Rabt S)	CSAH 12 (60th Ave S)	Rural	Agriculture	8900	1980000	x	0	None	None	None	<	60	T	0	0	1	0	7	\$321,000
45	12.002	CSAH	12	CSAH 12 (60th Ave S)	CR 78 (50th St 5)	Rural	Agriculture	2350	115000	\times	0	None	None	None	<	55	T	0	0	0	0	0	50
46	12.003	CSAH	12	CSAA 12 (60th Ave S)	CSAH 52	Rural	Agriculture	6500	9660000	-	45	Present	None	None	<5	55	TR	0	0	2	0	8	\$564,000
47	12.005	CSAH	12	CSAH 17 (100th St S)	CSAH 12 (60th Ave S)	Rural	Agriculture	412	42525	T		None	None	None	<	55	T	0	0	0	0	0	\$0
48	12.006	CSAH	12	CSAH 17 (100th St S)	CSAH 12 (50th Ave S)	Rural	Agriculture	465	51800	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
49	12.007	CSAH	12	CSAA 12 (50th Ave S)	CR 71 (110th St S)	Rural	Agriculture	420	30875	x	0	None	None	None	<	55	T	0	0	0	0	0	\$0
50	12.008	CSAH	12	CSAH 12 (50th STS)	CR 72 (120th St S)	Rural	Agriculture	535	68250	x		None	None	None	<5	55	T	0	0	0	0	0	\$0
51	12.009	CSAH	12	MN 9 (140th St S)	CSAH 12	Rural	Agriculture	1218	205538	x	0	None	None	None	25	60	TR	0	0	0	0	0	\$0
52	12.010	CSAH	12	CSAH 23 (1900th St S)	CSAH 12 (40th Ave S)	Rural	Agriculure	778	55800	-	0	None	None	None	<	55	T	0	0	0	0	0	\$0
53	12.011	CSAH	12	CSAH 12 (40th Ave S)	CSAH 31 (230th St S)	Rural	Agriculture	910	66400	x		None	None	None	<	55	T	0		0	0	0	\$0
54	13.001	CSAH	13	CSAH 13 (50th Ave S)	CSAH 52	Rural	Agriculture	4370	714000	T	0	Present	None	None	<	55	тR	0	0	0	0	0	\$0
55	14.001	CSAH	14	MN 336 (70th St S)	CSAH 14 (28th Ave S)	Rural	Agriculture	13248	8753625	x		None	Horizontal	None	<	55	LTTR	0	0	0	0	1	\$13,000
56	14.002	CSAH	14	CSAH 14 (28th Ave S)	CR 68 (90th St 5)	Rural	Agriculture	1432	45500	\times		None	None	None	<5	55	T	0	0	0	0	0	\$0
57	14.003	CSAH	14	CSAH 14 (28th Ave S)	CSAH 17 (100th St S)	Rural	Agriculture	1182	303888	x	0	None	None	None	<5	55	T	0	0	0	0	1	\$13,000
58	15.003	CSAH	15	${ }_{\text {CSAHH } 52}$	CSAH 15 (100th St s)	Rural	Agriculture	1482	47125	x		Present	None	None	<5	55	T	0	0	1	0	0	\$230,000
59	17.001	CSAH	17	CSAH 17 (100th St S)	CR 69 (70th Ave S)	Rural	Agriculture	180	6875	\times		None	None	None	<	55	T	0	0	0	0	0	\$0
60	17.004	CSAH	17	CSAH 17 (100th St S)	CSAH 19 (12th St)	Rural	Agriculture	922	212562	\times	0	None	None	None	<5	55	T	0	0	0	0	1	\$13,000
61	17.005	CSAH	17	US 10	CSAH 17 (100th St S)	Small Town	Industrial	15578	3982680	\times		None	None	None	<	30	LTR	0	0	0	0	1	\$13,000
62	18.001	CSAH	18	US 75	CSAH 18 (28th Ave N)	Rural	Agriculture	4895	4023250	\times	0	Present	None	None	<5	60	LTR	0	1	0	1	2	\$896,000
63	18.002	CSAH	18	CSAH 18 (28th Ave N)	CR 90 (50th St N)	Rural	Agriculture	1268	81000	\times	0	None	None	None	<5	55	T	0	0	0	0	0	50
64	18.003	CSAH	18	CSAH 18 (28th Ave)	CR 68 (90th St N)	Rural	Agriculture	1260	72000	x		None	None	None	<	55	T	0	0	0	0	,	\$0
65	18.004	CSAH	18	CSAH 18 (28th Ave N)	CSAH 19 (110th St)	Rural	Agriculture	1352	259938	T	15	None	None	None	<	55	T	0	0	0	0		50
66	18.005	CSAH	18	CSAH 18 (28th Ave N)	CSAH 19 (120th St N)	Rural	Agriculture	1098	49875	X	0	None	None	None	<5	55	T	0	0	0	0	0	50
67	18.006	CSAH	18	CSAH 18 (28th Ave N)	CR 92 (130th St N)	Rural	Agriculture	1088	39375	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
68	18.007	CSAH	18	MN9 (140th ST N)	CSAH 18 (28th Ave N)	Rural	Agriculture	2460	1064000	\times	0	None	None	None	25	60	T	0	0	1	0	0	\$230,000
69	19.001	CSAH	19	CSAH 19 (Parke Ave S)	CR 71 (7th St SE)	Small Town	Campus	2032	418500	-	0	None	None	None	<5	30	T	0	0	0	0	0	\$0
70	19.002	CSAH	19	US 10 (State St)	CSAH 19 (Parke Ave S)	Small Town	Commercial	16460	17500815	x	0	None	None	None	<	30	LTTR	0	0	0	1	4	\$172,000
71	19.004	CSAH	19	CSAH 19 (110th St N)	CR 84 (15th Ave N)	Rural	Agriculture	490	15925	x	0	None	None	None	<	55	T	0	0	0	0	0	50
72	19.007	CSAH	19	CSAH 26 (90th Ave N)	CSAH 19 (120th St N)	Rural	Agriculture	2475	121250	\times	0	None	None	None	>	55	T	0	0	0	0	0	\$0

List No. 2	CRSP 210	$\begin{aligned} & \text { Route } \\ & \text { System } \end{aligned}$	$\begin{aligned} & \text { Route } \\ & \text { No. } \end{aligned}$	Major Approach	Minor Approach	Area Type	Context Zone	Total Entering ADT [vpd]	Volume Cross			Adjacent RR Crossing	$\begin{aligned} & \text { Adjacent } \\ & \text { Curre } \end{aligned}$	Adjacent Development	$\underset{\substack{\text { Previous sTop } \\(>5 \mathrm{mi})}}{\substack{\text {. } \\ \text { (}}}$	Major Approach Speed Limit	$\begin{gathered} \text { Major } \\ \text { Apprach Turn } \\ \text { Lane } \\ \text { Configuration } \end{gathered}$	к	A	в	c	PDO	Crash cost
73	19.010	CSAH	19	CSAH 34 (160th Ave N)	CSAH 19 (120th St N)	Rural	Agriculture	710	33000	-	0	None	None	None	25	55	T	0	0	0	0	0	\$0
74	2.001	CSAH	2	CSAH2 2 (160th Ave S)	CR 59 (3rd St S)	Rural	Agricilure	875	21250	\times	0	None	None	None	<	55	T	0	0	0	0	0	50
75	2.002	CSAH	2	US 75 (14th St S)	CSAH 2 (160th Ave S)	Rural	Industrial	2185	1127250	x	0	None	None	None	25	60	TR	0	-	0	0		\$0
76	2.003	CSAH	2	CSAH 2 (160th Ave S)	CSAH7 7 (50th ST S)	Rural	Agriculture	818	29250	x	0	None	None	None	<	55	T				0	0	\$0
77	2.004	CSAH	2	CSAH2 2 (160th Ave S)	CSAH 11 (70th St s)	Rural	Agriculure	1140	305300	\times	0	None	None	None	25	55	T	0	1	0	0	2	\$776,000
78	2.005	CSAH	2	CSAH 2 (160th Ave S)	CSAH 15 (100th St S)	Rural	Agriculure	682	27200	-	0	None	None	None	<5	55	T	0	0	0	0	0	\$0
79	2.006	CSAH	2	CSAH 2 (160th Ave S)	CR 69 (110th St S)	Rural	Agriculture	668	17600	T	0	None	None	None	<5	55	T	0	-	-	0	0	\$0
80	2.007	CSAH	2	CSAH2 2 (160th Ave S)	CSAH 21 (1300th St S)	Rural	Agriculture	782	91200	\times	0	None	None	None	<	55	T	0	0	-	1	0	\$120,000
81	2.008	CSAH	2	CSAH 2 (160th Ave S)	CR 56 (160th St S)	Rural	Agriculture	648	4800	T	0	None	None	None	<	55	T	0	0	0	0	0	\$0
82	2.009	CSAH	2	MN9 (Front st)	MN 34 (160th Ave S)	Small Town	Residential	6020	822875	x	0	None	None	None	25	30	T	0	0	0	0	2	\$26,000
83	20.001	CSAH	20	CSAH 20 (70th AVE N)	CR 96 (Oakport St N)	Rural	Agriculture	715	124500	x	0	None	None	None	<	55	T	0	0	0	0	1	\$13,000
84	20.002	CSAH	20	US 75	CSAH 20 (70th AVE N)	Rural	Agriculture	3152	457500	\times	0	None	None	None	<	60	TR	0	0	1	0		\$230,000
85	21.002	CSAH	20	CSAH 21 (130th St S)	CR 55 (150th Ave S)	Rural	Agriculture	240	4400	T	0	None	None	None	<	55	T	0	0	0	0	0	\$0
86	21.003	CSAH	20	CSAH 21 (130th St S)	CSAH 52	Rural	Agriculture	1620	308000	\times	25	Present	None	None	25	55	TR	0	0	1	1	1	\$363,000
87	21.004	CSAH	20	CSAH 21 (130th St S)	CR 62 (120th Ave S)	Rural	Agricilure	255	7700	\times	0	None	None	None	<	55	T	0	0	0	0		\$0
88	22.001	CSAH	22	US 75	CSAH 22 (Wall Street Ave N)	Rural	Agriculture	5000	5394375	T	0	Present	None	None	<	60	тв	0	0	0	0	2	\$26,000
89	23.001	CSAH	23	US 10	CSAH 23 (190th St S)	Rural	Agriculture	15250	18755000	\times	0	None	None	None	25	65	LTR	0	0	2	0	1	\$473,000
90	26.001	CSAH	26	CSAH 26 (90th Ave N)	CR 98 (10th St NW)	Rural	Agriculture	3062	187500	T	0	None	None	None	<	55	T	0	0	0	0		\$0
91	26.002	CSAH	26	CSAH 26 (90th Ave N)	CR 96 (Oakport St N)	Rural	Agriculture	3240	1111500	\times	5	None	None	None	<	55	TR	0	1	0	0	0	\$750,000
92	26.003	CSAH	26	US 75	CSAH 26 (90th Ave N)	Rural	Agriculure	5300	7006875	\times	0	Present	None	None	25	60	TR	,	0	0	0	4	\$13,552,000
93	26.004	CSAH	26	CSAH 26 (90th Ave N)	CR 95 (40th St N)	Rural	Agriculture	2865	42750	T	0	None	None	None	<	55	T	0	0	0	0		\$0
94	26.005	CSAH	26	CSAH 26 (90th Ave N)	CR 68 (90th St N)	Rural	Agricilure	2180	64500	T		None	None	None	<	55	T	0	0	0	0	0	\$0
95	26.006	CSAH	26	CSAH 26 (90th Ave N)	CR 92 (1300th St N)	Rural	Agriculture	2715	40500	T	0	None	None	None	<	55	T		0	0	0	0	\$0
96	26.007	CSAH	26	MN9 (1400t ST N)	CSAH 26 (90th Ave N)	Rural	Agriculture	4275	4512500	\times	0	None	None	None	25	60	TR	0	0	1	0	3	\$269,000
97	26.008	CSAH	26	CSAH 26 (90th Ave)	CR113 (190th St N)	Rural	Agriculture	1665	141750	x	0	None	None	None	25	55	T	0	0	0	0	0	\$0
98	26.009	CSAH	26	CSAH 26 (90th Ave N)	CSAA 27 (200th St N)	Rural	Agriculture	1178	85250	x	0	None	None	None	>5	55	T	0	0	0	0	0	\$0
99	26.010	CSAH	26	CSAH 26 (90th Ave N)	CR114(210th st N)	Rural	Agriculture	1142	46750	x	0	None	None	None	<	55	T	0	0	0	0	0	50
100	26.011	CSAH	26	CSAH 26 (90th Ave N)	CSAH 33 (230th St N)	Rural	Agriculture	1580	556500	\times	0	None	None	None	>5	55	TR	0	0	0	1	0	\$120,000
101	26.012	CSAH	26	MN32	CSAA 26 (Front St)	Small Town	Commercial	2820	1778000	\times	0	Present	None	None	>5	30	T	0	0	0	0	1	\$13,000
102	26.013	CSAH	26	CSAH 26 (90th Ave N)	CSAH 37 (280th St N)	Rural	Agricilure	705	47250	T	0	None	None	None	>5	55	TR	0	0	-	0	0	\$0
103	26.014	CSAH	26	CSAA 26 (90th Ave N)	CSAH 37 (280th St N)	Rural	Agriculure	602	15812	T	0	None	None	None	>5	55	T	0	0	0	0	0	\$0
104	27.002	CSAH	27	CSAH 27 (200th StN)	CSAH 34 (160th Ave N)	Rural	Agricilure	780	36500	\times	0	None	None	None	25	55	T	0	0	0	0	0	\$0
105	3.007	CSAH	3	CSAH 3 (Oakport St N)	MSAS 151 (43rd Ave N)	Rural	Agriculture	2922	65250	T	0	None	None	None	<	55	T	0	0	0	0	0	\$0
106	3.008	CSAH	3	CSAH 22 (Wall Street Ave N)	CSAH 3 (Oakport St N)	Rural	Agriculture	5645	6895500	-	45	None	None	None	<	55	T	0	0	0	1	2	\$146,000
107	31.001	CSAH	31	MN 34	CSAH 31 (230th St S)	Rural	Agricilure	2885	962500	\times	0	None	None	None	25	55	TR	0	0	0	0	0	\$0
108	31.002	CSAH	31	CSAH 31 (230th St S)	CR 126 (120th Ave S)	Rural	Agriculture	498	28112	\times	0	None	None	None	<	55	T	1	0	0	0	0	\$13,60,000
109	31.003	CSAH	31	CSAA 31 (230th St S)	CR 119 (60th Ave S)	Rural	Agriculture	750	41400	x	0	None	None	None	<	55	T	0	0	0	0	0	\$0
110	31.004	CSAH	31	US 10	CSAH 31 (230th St)	Small Town	Mixed Use	14750	19285000	\times	0	None	None	None	>	50	LTR	0	1	1	1	12	\$1,25,000
111	33.001	CSAH	33	CSAH 33 (5th 5t)	CR115 (15th Ave N)	Rural	Agriculture	1075	51250	T	0	None	None	None	<	50	T	0	0	0	0	0	\$0
112	33.002	CSAH	33	CSAH 33 (230th St N)	CR 114 (28th Ave N)	Rural	Agriculure	1088	87500	+	5	None	None	None	<	55	T	0	0	0	0	0	\$0
113	33.003	CSAH	33	CSAH 33	CR 112 ((140th Ave N)	Rural	Agriculture	515	27300	\times	0	None	None	None	<	55	T	0	0	0	0	0	50
114	33.004	CSAH	33	CSAH 34 (160th Ave N)	CSAH 33 (230th St N)	Rural	Agriculture	1048	180525	\times	0	None	None	None	>	55	T	0	0	0	0	0	50
115	34.001	CSAH	34	US 75	CSAH 34	Small Town	Industrial	2342	599625	\times	0	None	None	None	25	60	TR	0	0	0	0	0	\$0
116	34.002	CSAH	34	CSAH 34 (160th Ave N)	CR 73 (90th St N)	Rural	Agriculture	615	20300	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
117	34.003	CSAH	34	MN9 (Hwy 9 N)	CSAH 34 (7th St)	Small Town	Residential	2625	1508750	\times	0	None	None	None	>5	60	TR	0	0	0	0	2	\$26,000
118	34.004	CSAH	34	CSAH 34 (1600th Ave N)	CR 110 (190th St N)	Rural	Agriculture	822	18000	T	0	None	None	None	25	55	T	0	0	0	0	0	\$0
119	34.005	CSAH	34	CSAH 34 (Norther Pacific Ave)	M8(1st St E)	Small Town	Commercial	1060	45675	\times	0	Present	None	None	<	30	T	0	0	0	0	0	50
120	34.006	CSAH	34	CSAH 34 (160th Ave N)	CSAH 37 (280th St N)	Rural	Agriculure	820	38500	\times	0	None	None	None	25	55	T	0	0	0	0	0	\$0
121	35.001	CSAH	35	MN 34 (160th Ave S)	MN 32 (270th St S)	Rural	Agriculture	2678	1008812	\times	0	None	None	None	>5	55	TR	0	0	0	1	0	\$120,000
122	36.001	CSAH	36	CSAH 36 (170th Ave NW)	CR 100 (10th ST NW)	Rural	Agricilure	195	8100	\times	0	None	None	None	<	55	T	0	0	0	0	0	\$0
123	36.002	CSAH	36	US 75	CSAH 36 (170th Ave NW)	Rural	Agricilure	2065	17750	\times	0	None	None	None	<	60	TR	0	0	0	0	0	\$0
124	43.001	CSAH	43	CSAH 52	CSAH 43 (Main Ave E)	Small Town	Commercial	5215	4571500	\times	0	None	None	None	25	30	T	0	0	0	0	1	\$13,000
125	43.002	CSAH	43	CSAH 52 (Front St S)	CSAH 43 (5th Ave SE)	Small Town	Residential	2635	819000	T	0	None	None	None	<5	30	T	0	0	1	0	0	\$230,000
126	44.001	CSAH	44	Us 10	CSAH 44	Rural	Agriculure	14015	1598500	T	0	None	None	None	<	65	LTTR	0	-	0	0	0	\$0
127	5.001	CSAH	5	US 75	CSAH 5 (100th Ave N)	Rural	Agriculture	2422	763625	\times	20	Present	Horizontal	None	<	60	TR	0	0	0	0	1	\$13,000
128	5.006	CSAH	5	CSAA 5 (30th St N)	CSAH 34 (160th Ave N)	Rural	Agriculure	390	21125	\times	0	None	None	None	>	55	T	0	0	0	0	0	\$0
129	52.001	CSAH	52	MN9	CSAH 52 (175th ST S)	Small Town	Industrial	3425	1856250	r	30	None	None	None	>5	55	T	0	-	0	0	0	50
130	52.002	CSAH	52	CSAH 52	CR 55 (150th Ave S)	Rural	Agriculture	1452	138375	\times	35	Present	None	None	<	55	T	0	0	0	0	0	\$0
131	52.003	CSAH	52	CSAH 52	CR 56 (160th St S)	Rural	Agriculture	1365	20250	\times	20	Present	None	None	<5	55	T	0	0	0	0	0	50
132	52.004	CSAH	52	CSAH 52	CR 62 (120th Ave S)	Rural	Agricilure	1480	43500	\times	45	Present	None	None	<	55	T	0	-	0	0	0	50
133	52.005	CSAH	52	CSAH 52	CR 69 (110th St S)	Rural	Agriculture	1505	79750	x	45	Present	None	None	<	55	TR	0	0	0	0	0	\$0
134	52.006	CSAH	52	CSAH 52	CR 68 (90th St s)	Rural	Agriculure	1480	43500	\times	40	Present	None	None	<	55	T	0	0	0	0	0	50
135	52.007	CSAH	52	CSAH 52	CR 63 (80th St 5)	Rural	Agriculture	4235	147000	\times	45	Present	None	None	<	55	TR	0		0	0	0	50
136	52.008	CSAH	52	CSAH 52 (Holloway ST)	CR 67 (1st St S)	Small Town	Residential	4342	598500	5-leg	45	Present	None	None	<5	55	T	0	0	0	0	0	50
137 138	52.009	CSAH	52	CSAH 52	CR 69 (70th Ave S)	Rural	Agriculture	4250	210000	-	40	Present	None	None	<5	55	T	0	0	0	0	0	\$0
138 139	52.010 52.011	${ }_{\text {CSAH }}^{\text {CSAH }}$	52 52	CSAA 52 CSAH 52	CR 75 (50 th Ave S) CR 78 (50th St 5)	Rural Rural	Agriculure Argiculure	4772 5350	106875 265000	r	40 45	${ }_{\text {None }}$	None None	None None	<5	55 55	T	0	0	0	0	0	\$0
140	6.001	CSAH	6	MN 32 (270th St S)	CSAH6 (120th Ave S)	Rural	Natural	1348	458800	-		None	None	None	>5	50	T	-	0	0	0	0	\$0
141	6.002	CSAH	6	CSAH2 2 and CSAH 6	CR 128	Rural	Agriculture	902	46612	x	0	None	None	None	<	55	T	0	0	0	0	0	\$0
142	7.004	CSAH	7	CSAH 7 (40th ST S)	CSAH 8 (110th AVE S)	Rural	Agriculture	275	16650	\times	0	None	None	None	<5	55	T	0	0	0	0	0	\$0
143	7.007	CSAH	7	CSAH7 (40th STS)	CSAH 12 (60th Ave S)	Rural	Agriculture	2428	293250	\times	0	None	None	None	<5	55	T	0	0	1	1	0	\$350,000
144	8.001	CSAH	8	CSAH 8 (110th AVE S)	CR 59 (3rd St S)	Rural	Agriculture	285	8750	\times	0	None	None	None	<5	55	TR	0	0	0	0	0	50

Rural Intersection List for Clay County

List No. 2	CRSP 210	$\begin{aligned} & \text { Route } \\ & \text { System } \end{aligned}$	$\begin{gathered} \text { Route } \\ \text { No. } \end{gathered}$	Major Approach	Minor Approach	Area Type	Context Zone	Total Entering ADT [vpd]	Volume Cross Product [vpd^2]		$\begin{gathered} \text { Alignment } \\ \text { [kew } \\ \text { [Degres] } \end{gathered}$	Adjacent RR Crossing	$\begin{aligned} & \text { Adjacent } \\ & \text { Curve } \end{aligned}$	Adjacent Development	Previous STOP (>5 mi)	Major Approach Speed Limit	Major Approach Turn Lane Configuration		k	A	в	c	PDO	Crash cost
145	8.002	CSAH	8	US 75 (14th 5 S S)	CSAH 8 (110th AVE S)	Rural	Agriculture	1568	293625	x	0	None	None	None	<	60	TR		0	0	0	0	0	\$0
146	8.003	CSAH	8	CSAH 8 (110th AVE S)	CR 61 (50th St S)	Rural	Agriculture	192	1388	\times		None	None	None	<5	55	T		0	0	0	0	0	S0
147	8.004	CSSAH	8	CSAH 11 (70th St S)	CSAH8 (110th Ave S)	Rural	Agriculure	985	96250	\times	0	None	None	None	<5	55	T		0	0	0	0	0	\$0
148 149	${ }_{9}^{9.0002}$	${ }_{\text {CSSAH }}$	9		CSAH 18 (28th Ave N$)$ $\operatorname{CSAHO} 9$ (40 th St N$)$	Rural Rural	Agriculure	1702 2988	603000 39875	-	0	None	None	None	<5	55 55	${ }_{\text {TR }}^{\text {TR }}$		0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	S0
$\begin{aligned} & 149 \\ & 150 \end{aligned}$	${ }^{9.0004} 100001$	${ }_{\text {CSAAH }}^{\text {CR }}$	${ }_{10}^{9}$	CSSHH 26 (90th Ave N) CSAH 26 (90th Ave N$)$	${ }_{\text {CSAH9 (}}^{\text {Coth St N }}$)	$\xrightarrow{\text { Rural }}$ Rural	Agriculure Agriculture	2988 3020	391875 60000	T	0	None None	None None	None None	<5	$\begin{array}{r}55 \\ 55 \\ \hline\end{array}$	T		0	0	0	0	1	\$13,000
151	100.003	CR	100	CR 100 (15th St NW)	CR 101 (200th Ave N)	Rural	Agriculture	90	1800	\times	0	None	None	None	<	55	T		0	0	0	0	0	S0
${ }^{152}$	108.002	CR	108	M 9 ((140th ST N)	CR 108 (1400th Ave N)	Rural	Agriculture	2095	370500	\times	0	None	None	None	<5	60	${ }_{T}^{\text {TR }}$		0	0	0	0	0	50
153	74.001	CR	74	CR 74 (12th Ave S)	CR 78 (50th 5t 5)	Rural	Agriculture	195	4250	\times	0	None	None	None	<5	55	T		0	0	0	0	0	\$0

This page intentionally left blank

Urban Segment List for Clay County																	
List No.	CRSP 210	Route System	Route No.	Segment Start Description	Segment End Description	Length [miles]	ADT [vad]	Context Zone	Cross Section	Design	Speed Limit [mph]	Sidewalk	Access Density [access per mile]	Total Crashes	Severe Crashes	Total HO+SSO	Severe HO+SSO
1	3.002	CSSA		Intersection of CSAH/111t 5 St a and 2nd Ave N	Intersection of CSAH 96 and MN 22	4.30	5583	Residential	2-tane	Undivided	30	Both Sides	33.96	17	0	3	0
2	9.001 .001 3.001	CSSAH	9	Intersection of CSAH9/US 10 Frontagr Rd and CSAH 9	Intersection of 28th Ave and 400th 5 S N	2.00 0.14	1540 4600	Residential Commercial	${ }_{\text {2-Llane }}$	Undivided	55 55	${ }_{\text {None }}^{\text {Noth }}$ S	22.95 13634 18	15 21	1	${ }_{4}$	1
4	${ }_{7} 7.002$	CSSAH	7	. 06 Miles South of Intersection of SSAh7/41st Ave S and 400th Sts	Intersection of MN 52 and 40th 5 S 5	0.52	1950	Residential	2-tane	Undivided	${ }_{55}$	None	${ }_{26.73}$	2	0	0	0
5	${ }^{22.001}$	CSAA	${ }^{22}$. 20 Miles West of f Inersection of CSAHH2/44th St NW and MN 22	Intersection of U5 75 and MN 22	2.17	4333	Residential	2 -tane	Undivided	${ }_{4}^{40}$	None	26.78	14	1	2	0
${ }^{6}$	${ }^{78.003}$	$\mathrm{CR}^{\text {ch }}$	78	Intersection of CR78 8nd CSAH 72	Intersection of 2nd Ave SE and Main 5 S	${ }^{1.30}$	${ }^{330}$	Agriculture	${ }^{2}$-tane	Undivided	${ }_{5}^{55}$	None	${ }^{24.70}$	1	0	0	
8	20.001 52008	${ }_{\text {csah }}^{\text {CSSH }}$	$\begin{array}{r}20 \\ 52 \\ \hline\end{array}$	Intersection of SSAH20/477t Ave NW and 7 7 Oth Ave NW	. 16 Miles West of titersection of tht 5 St and 7 7oth Ave N	0.86 0.68	340 6000	Residential	${ }_{\text {2-alane }}^{\text {2-ane }}$	Undivided	$\begin{array}{r}55 \\ 55 \\ \hline\end{array}$	None None	2.5 .58 11.73	10	0	${ }_{1}$	\bigcirc
					Inter esection oft-94 and C CAAH 52 Total Lengti	$\xrightarrow{0.688} 11.8$								${ }_{10}^{10}$	$\frac{0}{2}$	12	\bigcirc

This page intentionally left blank

Lst No. 2	cspr 210	$\underbrace{\substack{\text { a }}}_{\substack{\text { Roue } \\ \text { Spsem }}}$	$\underbrace{\substack{\text { No. }}}_{\text {Route }}$	Mijor Approsach	Minor Approsh	Anea Tpe	Contert one	Trafic control	Toutal	Volume Cross Product $\left[\mathrm{vpd}^{2}\right]$	Les Configutaion		$\begin{gathered} \text { alignent } \\ \text { atever } \\ \text { deveress } \end{gathered}$	$\xrightarrow{\text { adiceen }}$ Develoment	$\begin{aligned} & \text { Major Approacl } \\ & \text { Speed Limit } \\ & \text { [mph] } \end{aligned}$	$\begin{aligned} & \text { Minor Approact } \\ & \text { Speed Limit } \\ & \text { [mph] } \end{aligned}$	Misor Apopoash Lefet Tum		Max Number of Lanes Crossed	Presereof	Pedestrian Crossing Type	к	A	:		po	Cash cost
${ }_{2}^{1}$	$\underbrace{1.001}_{\text {1.001 }}$		${ }_{3}^{1}$								${ }_{\text {x }} \times$	Undided	${ }_{0}^{15}$	None	${ }_{30}^{40}$	${ }_{30}^{40}$	Pemminefferoected	${ }_{\text {IR }}^{\text {IT }}$			${ }_{\text {None }}^{\text {None }}$ Mextin	\%	!			${ }^{\circ}$	Sis9,
13 4 4	(${ }_{3}^{3}$	(msts		Ubitan	$\substack{\text { commerial } \\ \text { comose }}$			${ }_{\text {casssoon }}$	¢	Uutur	:		30 30 30	30 30 30	Pemitedeforoceted	$\stackrel{\text { im }}{\text { T }}$	5	$\substack{\text { Sonts } \\ \text { Souses } \\ \text { gotsoes }}$	Manctick	0	!			${ }_{10}^{10}$	Stinsomo
	3.05	$\mathrm{c}_{\text {car }}$		Csat3 311Its SiN	MSSSS 29 (ISthavem)	Uran	Recrational	AlWeas sop	12580	3 3055500		Undurued		None		${ }_{30}$				Some		-	-				S606000
${ }_{6} 6$	$\substack{3.006 \\ 45001}^{\substack{\text { a }}}$	${ }_{\text {cosal }}^{\text {cat }}$	${ }_{4}^{3}$			Stububan	$\substack{\text { Resisenemal } \\ \text { Residenal }}$		${ }_{\substack{3345 \\ 1382}}$		¢	Undived	${ }^{25}$	(ene	${ }_{\substack{\text { s5 } \\ 30}}$	${ }_{\substack{55 \\ 30}}$	Nat	T	3	${ }_{\text {None }}^{\text {Nane }}$		\bigcirc	-		0		Sisom
8	45002		45	Us50. (Canereave E)		s.aubran	$\substack{\text { Resisenemal } \\ \text { Residerise }}$		${ }_{\substack{8245 \\ \text { 82022 }}}^{2180}$		${ }^{\text {x }}$	Une	${ }_{4}^{0}$	Nome	30 35 5	30 30 30	NA	${ }_{\text {TR }}^{\text {TR }}$	5	Some	None	\bigcirc	-			${ }_{5}^{5}$	$\substack{\text { sisis.00 } \\ \text { Slisem }}$
10	${ }_{5}^{52013}$	csat	${ }_{52}$			ssuburan	Residental	Stigal	11850	3510000	x	Curb	0	None	${ }_{30}$	${ }^{30}$	Eefprotected	¢пR		some	Marking	0	-			${ }_{5}^{5}$	Sals,00
${ }_{12}^{11}$	¢	${ }_{\text {cosar }}^{\text {cost }}$	$\stackrel{52}{7}$				$\substack{\text { Ressisenalal } \\ \text { Residerial }}$		${ }_{240}^{8400}$			Unetubed	\bigcirc	$\substack{\text { None } \\ \text { None }}$	${ }_{55}^{55}$	30 55 5	$\stackrel{N a}{\text { Na }}$	тR		None	None	\bigcirc	-			${ }_{2}^{7}$	
-	$\xrightarrow[\substack{\text { 7.001 } \\ \text { 2001 }}]{ }$		$\stackrel{7}{9}$			Stubube	$\substack{\text { Aaticturue } \\ \text { noustral }}$				${ }_{\text {x }} \times$	Undused	:	$\substack{\text { None } \\ \text { Present }}$	¢	¢	${ }_{\text {NA }}^{\text {NA }}$	\%	${ }_{6}^{3}$		None	\bigcirc	0			${ }_{6}$	
19 16 16	(is		${ }_{\substack{75 \\ 78 \\ \hline \\ \hline}}$			(sicte	$\substack{\text { commereal } \\ \text { Aerictue }}$		${ }_{4}^{775}$	$\substack{233530 \\ 4785}$	x	Unetived	\bigcirc		50 5 5	30 30 30	${ }_{\text {Na }}^{\text {Na }}$	${ }_{\text {Tr }}^{\text {T }}$		$\substack{\text { None } \\ \text { None }}$	Noome	\bigcirc	\bigcirc			0	${ }_{50}$
${ }^{17}$	coirs	${ }_{C R}$	${ }_{78}$		Cr78 Mains ${ }^{\text {cis }}$				${ }_{930} 9$	19339	\times	Undused	\bigcirc	None	${ }_{30}^{50}$	${ }_{30}$	NA	T	$\frac{2}{2}$	-		\bigcirc	-		-		${ }_{50}^{50}$

This page intentionally left blank

Appendix B - Meeting Minutes/Summaries

This page intentionally left blank

Phase 2 Kickoff Meeting

PREPARED BY:	Renae Kuehl/SRF	
COUNTY:	All	
meeting date:	April 12, 2018	
MEETING TIME: 11:00 AM - 2:00 PM		
LOCATION: St. Cloud Training Center, Lewis North Conference Room - 3725 12 ${ }^{\text {th }}$ St. N St. Cloud, MN 56303		
ATTENDEES:		
Ryan Thilges, Blue Earth County Daryle Dahl, Roseau County		
Dan McCormick, Carver Craig Jenson, Scott County		
David Overbo, Clay County Andrew Witter, Sherburne County		
Guy KohInhofer, Dodge County Dan Knapek, Sherburne County		
Karin Grandia, Itasca County Ryan Odden, Wadena County		
Jeremy Pfeifer, Kandiyohi County Joe Gustafson, Washington County		
Sam Muntean, Lac qui Parle County		
Aaron Vanmoer, Lyon County Mark Vizecky, MnDOT		
Rich Sanders, Polk County Derek Leuer, MnDOT		
Keith Berndt, Redwood County Howard Preston, Jacobs		
Dennis Luebbe, Rice County Cheri Marti, Jacobs		
	Ketring, Roseau County	Renae Kuehl, SRF

County Follow-up Action Items

- Review segmented maps and provide feedback - Due Thursday, April $26^{\text {th }}$.
- See PPT slides 39, 40, and 41 for requested confirmation for segments, intersections and curves.
- Consider county-specific safety workshop goals/needs and plan to participate in up-coming AllCounties Webinar on alternative safety workshop formats and audiences. Note: One-hour webinar dates are Tues., May 8 from 2-3 pm and Thurs., May $10^{\text {th }}$ from 1-2 pm.
- Begin planning for county safety workshop date and location. (T, W, or Th during Sept/Oct/early Nov)
- Provide feedback on preferred crash data set to use for crash analysis to Mark Vizecky @ mark.vizecky@state.mn.us or Derek Leuer @ derek.leuer@state.mn.us. Phase 2 counties will need to determine this as a whole.
- Provide contact information for county staff to be involved to Renae Kuehl at rkuehl@srfconsulting.com

Discussion Items

- First phase - Many projects had suggested 2-foot shoulder paving, but there is no room for it. We shouldn't suggest projects that are not possible. A lot of high priority projects were

MEETING SUMMARY

completed. Required to justify why the county was asking for lower priority project funding that were lower on the priority list.

- Sometimes the countermeasure might seem like a quick fix, but there is additional work that is needed to install the strategy (i.e. grading to pave shoulders)
- Do any of the Phase 1 agencies have policies that we are developing? Response: No, county policy development are not part of the project.
- Is there data on how to maintain the buffer lane with the plastic bollards? Response: The state maintenance staff thought it would be challenging, but it wasn't as bad as they anticipated. They plowed the lanes' right of way and used a skid steer to clean out around the bollards on the weekend. Also, note that bollards are NOT required.
- The phase 1 counties reviewed the list of strategies and most included the majority of the strategies in their Big Book of Ideas. However, some were removed due to specific strategies that won't work for their agency.
- Would like to see emphasis on corridor projects rather than individual locations because it's easier to plan for and build a corridor project rather than spot location projects. Response: CRSP update will recommend projects at locations, but the county is certainly free to coordinate locations to create a corridor project.
- Community members want to see reductions in fatal/crashes to justify the effort. Would like something that shows:
- This is what our county has done.
- This is what has been done statewide.
- This is the impact its had.

Response: CRSP update provides results of Phase $1 \& 2$ county-implemented projects for segments, intersections and curves including known crash reduction factors and the pool of applicable severe crashes by county, District and Greater MN Crashes.

- Everyone's board/community will have different needs and questions to answer.
- Example: One county had a project canceled at the last minute after HSIP funding was secured because local farmers were not on board with the change. They ended up canceling the project and losing HSIP funds. It would have been helpful to educate the board members to help support the engineer's decisions.
- How much out-of-the-box thinking will we be doing? Is there new technology that we can implement? Response: New strategies have been implemented since the original CRSP. We will welcome any ideas. MN is a leader in safety and has done a lot of the proven strategies, we need to consider what can be done in addition to what has already been done.
- Will the plans be addressing ped/bike crashes? Response: Yes, if there is a concern in the county.
- Coordinate better to get more buy-in from MnDOT district staff for their recommendations and projects in the plan. Response: MnDOT District Staff is encouraged to participate in the Safety Workshop.
- SA design needs and integrating funding sources so that HSIP funds can be used on state aid projects. MnDOT Metro only allowed a 2 -foot shoulder and rumbles.

MEETING SUMMARY

- An active TZD group in Sherburne county, would like to see this group integrated into the plan development as well. Response: Depending on County workshop goals/objectives, Phase 2 counties are encouraged to invite TZD stakeholder groups to the county safety workshop. A number of Phase 1 CRSP Update counties invited their TZD coalitions.

Research Syntheses one pagers - Potential topics

- Access management
- Lighting rural intersections
- How to address requests for dynamic speed signs. What is a good system wide approach for deploying dynamic speed signs? Speed control? Curve warning?
- Intersection safety - treatment options to improve intersections. What is the biggest bang for your buck between options such as lighting, RICWS, etc.

2016-2017 crash data

- CRSP Update Phase 1 counties used 2011-2015 crash data. The 2016-2017 data set has only been available for three weeks. MnDOT is still working on trying to understand the data.
- The group needs to decide what crash data set to use as a whole. Either use 2011-2015 crash data or incorporate the 2016-2017 data set.
- Counties are to share feedback on what to want to move forward with, with Mark V and/or Derek at mark.vizecky@state.mn.us or Derek Leuer @ derek.leuer@state.mn.us.

Crash Data Overview

- Why is FHWA so slow to go to the systemic/data driven approach?
- Project implementation at the local level is not easy, challenging for other states and at the national level. MN has a large state aid staff and each county has an engineer and supporting staff. Many other states do not have this.
- Stronger data is needed to prove that a traffic signal is not a safety device. Refer to pages A-18, 19, 20 \& 21 in the Traffic Safety Fundamentals Handbook.
- Do we have data on pedestrian crashes at roundabouts? Response: There are not enough crashes to document anything. The features in roundabouts are often the same characteristics of strategies used for pedestrian safety (one-way roads, median islands, lower speeds, etc). MnDOT looked at 140 roundabouts before/after study, which showed 3-4 crashes before and the same after, and all were at the same location.
- If an intersection with a signal isn't working, would you convert to a roundabout? Response: Yes, it would be a good option.
- The existing crash data system is not good at locating crashes at roundabouts due to issues with mapping the location of the crashes.

Roadway Network Assessment

- We are not reviewing crashes on gravel roads because Minnesota data shows that 95% of severe crashes along the county stem occur on paved roads - safety investments along paved roads represent the greatest opportunity for crash reduction. NACE has an initiative right now to review crashes and safety on gravel roads. There is a safety committee that is focusing on

MEETING SUMMARY gravel and paved road safety. Good geometry is the number one characteristic of safer gravel roads.

- Simple and spiral curves with different superelevations. Does that matter? Do we need to know where they are? If you know, let us know.

CRSP Phase 2 - Individual County Meeting \#1

COUNTY:	Clay County
MEETING DATE:	June 26, 2018
MEETING TIME:	$9: 00$ am $-11: 00$ pm CST
LOCATION:	Clay County Highway Department, Moorhead, MN
PARTICIPANTS:	David Overbo, Erik Hove (Asst. County Engineer), Seth Pfeifer (Engineering Tech)
	Derek Leur, MnDOT and Cheri Marti, Jacobs

Summary of County Action Items:

Please submit all action items listed below to Renae Kuehl, SRF Consulting @ rkuehl@srfconsulting.com If questions, contact either Renae Kuehl or Cheri Marti, Jacobs @ cheri.f.marti@gmail.com
$\square \quad$ Confirm roadway network maps are final. (Target: ASAP for County data analysis to begin.)
\square Determine/confirm county safety workshop date (T, W, or Th during Sept/Oct/Nov) and location. (Target: ASAP)
\square Determine workshop needs, confirm preferred format (A. featured safety strategies presentation only, B) site discussion only, C) featured safety strategies + site discussion, D) Board presentation only, or E) Board + abbreviated stakeholder workshop) and key audience(s). (Target: August $\mathbf{1}^{\text {st }}$)
$\square \quad$ From the Master Big Book of Ideas, select all safety strategies to be considered for County's CRSP Update (Target Date: August 1, 2015).

च If including a featured strategy discussion during workshop, from the Master Big Book of Ideas, select featured safety strategies to present/discuss during the safety workshop. (Target Date: 4 weeks prior to County Safety Workshop).
$\square \quad$ Review current list of CRSP Research Syntheses one-pagers and MnDOT District topic summaries and submit input for up to two potential new research syntheses topics. (Target: July 9, 2018)

『 Provide contact information for additional key staff you would to include in CRSP Update emails/correspondence.

Meeting Discussion Highlights

1. CRSP Update Project Progress: Phase 2 Schedule and Outreach Calendar
a. Derek provided an overview of CRSP included its purpose and changes from the original CRSP
i. County commented on the challenge of rural long, flat straight roads...people drive distracted, speed, etc.
2. County Roadway Network Assessment

- Updated, final network maps distributed which incorporated county comments/edits.

County Action: County to confirm network maps are final. (Target: ASAP for County data analysis to begin.)
2. County Highway Safety Improvement Program (HSIP) Project Implementation

- CRSP staff explained that to summarize the impact of HSIP projects from the original CRSP, it is necessary to examine the collective impact of HSIP investments for all counties statewide versus each individual county. Each county has so few severe crashes, therefore, a larger sample size including hundreds of crashes is needed for credible or statistically relevant evaluation results.
- Clay asked about impact of cabin median barrier; Derek provide a broad overview of their effectiveness.
- In addition to a summary of HSIP investments statewide, each County will have an opportunity to highlight safety projects and the county's safety approach during its Safety Workshop.
- Clay County new construction projects get 6" edgelines.

3. County Crash History (2011-2015): CRSP staff provided an brief overview of county crash trees and safety focus areas to help guide the selection of safety strategies and projects for the updated CRSP.

- Focus Area Matrix - CRSP staff explained that severe injury numbers don't add up because it is a combination of contributing crash factors.
- Crash data can help redirect board/stakeholder concerns and dispel misperceptions of severe crash causation (i.e., clear, dry pavement is a higher risk vs. winter driving; animal crashes are very infrequent vs. perceived risk of animal-related crashes).

4. CRSP Updated Plans: Similarly to the original CRSP, updated CRSP will include the following:
a) Inventory of all county road segments, rural paved horizontal curves, and major intersections
b) Crash Facts: Data-driven review of crashes on county roads over the last five years and summary of safety focus areas and crash types (e.g., lane departure)
c) List of recommended high priority safety strategies
d) Prioritized list of locations that are most at risk for severe crashes
e) Prioritized list of location-specific safety strategies to consider for county implementation

- Plan had stars...based on crash data? Derek explained systemic risk factor analysis and the priorities set reflect high-risk characteristics as well as
- Clay commented that having a CRSP helps to prioritize the project and

Note: Although the CRSP focus is infrastructure safety strategies and projects, the plan will describe the role of driver behavior in crashes and Minnesota's TZD regional safety implementation approach to help local communities to address high-risk driver behaviors.
5. What do you hope happens/doesn't happen as part of your CRSP Update?

- Clay is concerned that there may not be enough to do in Clay County because they may not have high-risk items.
- Response: Derek said to explain that County has done a lot of good safety projects, can move down the list.
- Would guardrail be a candidate? Local Road Improvement program may be a better funding source.
- Building 2 foot shoulder; milling and Rumble Strip project could be a potential
- Rumble stripe with fog line over the top; residents didn't like.
- Debunk safety myths. For example, traffic signals are not safety devices; Lowering speeds -- people drive to the road environment and not a posted speed limit; Installing crosswalks alone are not sufficient for pedestrian safety.

6. County Safety Workshop:

- Clay County Workshop Date: Wednesday, October 31, 2018; Clay County Joint Maintenance Facility, 295141 1/2 Street South, Moorhead MN 56560
- Goals/Workshop Needs: Erik and Seth will discuss further with David to determine workshop needs/approach.
- Expected audience: Diverse Safety Stakeholders (Enforcement, EMT, Schools, City, etc.) and Board members.
- Highway Tracking Sub-committee members would likely attend the workshop including 2 Board members, County Administrator, and the Board Chair.
- Will bring map to Board Highway Tracking Sub-committee meeting and the County Tech and Maintenance to get input on site locations.
- Format preference: Site Location Discussion + Featured Strategies' Discussion
- County received a call...solar powered edged stop signs...got a call, didn't stop because wasn't blinking!
- RICWS: Is it best that the light always be on? Having the system off until an approaching car is being tested.

Toward $\mathbf{Z \in R O}$ Deaths

- Possible site locations for workshop discussion:
A. Hwy 10 and CSAH 31 - mini roundabout an option?
B. CR2 \& Hwy 11
C. Hwy 12 and Hwy 52 - skewed intersection; top 10% of volume - geometrics are challenging

County Actions:

- Determine/confirm county safety workshop date (T, W, or Th during Sept/Oct/Nov) and location. (Target: ASAP)
- Determine workshop needs, confirm preferred format (A. featured safety strategies presentation only, B) site discussion only, C) featured safety strategies + site discussion, D) Board presentation only, or E) Board + abbreviated stakeholder workshop) and key audience(s). (Target: August 1st)

7. Big Book of Ideas

- CRSP staff explained the opportunity to tailor strategies listed in the Master Big Book of Ideas to reflect strategies to be considered for CRSP Update.

Clay County initial areas of interest:

- Skewed intersections will be important
- Appropriate application of strategies...not a magic bullet for
- LED stop signs

County Actions:

- From the Master Big Book of Ideas, select all safety strategies to be considered for County's CRSP Update (Target Date: August 1, 2015).
- If including a featured strategy discussion during workshop, from the Master Big Book of Ideas, select a more limited set of featured safety strategies to present/discuss during the safety workshop. (Target Date: 4 weeks prior to County Safety Workshop).

8. Research Synthesis Topic

- County interested - Access Management; possibly attach to permit application.

County Action: Review current list of CRSP Research Syntheses one-pagers and MnDOT District topic summaries and submit input for up to two potential new research syntheses topics. (Target: July 9, 2018)

Phase 2:

 MN County Road Safety Plan UpdatesKICK-OFF WEBINAR MEETING
MARCH 9, 2018

Agenda

- Welcome \& Introductions
- CRSP Update Goals
- Phase 1 \& Phase 2 Counties
- MnDOT and Consultant Team
- What is different from original CRSP?
- CRSP Phase 2 - Process Schedule/Overview
- Roadway Network Development
- Questions?
- Next Steps

Questions? Please ask at any time.

Introductions

- MnDOT
- Counties - Phase 2
- Blue Earth
- Carver
- Clay
- Dodge
- Itasca
- Kandiyohi
- CH2M Team
- Lac Qui Parle
- Lyon
- Polk
- Redwood
- Rice
- Roseau
- Scott
- Sherburne
- Wadena
- Washington

CRSP Update Goals

- Produce Updated County Road Safety Plans:
- Customized approach
- Updated crash data
- Individual outreach and engagement plans
- Additional safety practices
- Provide technical support for county implementation of HSIPfunded safety projects
- Focus on reducing Fatal and Incapacitating Injury crashes - build on prior results and continue to bend the trendline

Counties included in

Blue Earth - Ryan Thilges
Carver- Lyndon Robjent/Dan McCormick
Clay- David Overbo
Dodge- Guy Kohinhofer
Itasca- Karin Grandia
Kandiyohi- Mel Odens
Lac qui Parle- Sam Muntean
Lyon- Aaron Vanmoer
Polk- Rich Sanders
Redwood- Keith Berndt
Rice- Dennis Luebbe
Roseau- Brian Ketring
Scott- Tony Winiecki/Craig Jenson
Sherburne- Andrew Witter
Wadena- Ryan Odden
Washington- Wayne Sandberg/Joe Gustafson

The Team

CH2M Team Contact Information

Role	Name	Phone	Email
Project Manager	Howard Preston	$(651) 365-8514$	howard.preston@ch2m.com
Outreach	Cheri Marti	$(612) 616-4280$	cheri.f.marti@gmail.com
	Renae Kuehl	$(763) 249-6783$	rkuehl@srfconsulting.com
Data Collection	Ann Johnson	$(612) 275-8190$	ann.johnson@peservicesmn.com
Data Management \& Analysis	Veronica Richfield	(651) 365-8523	veronica.richfield@ch2m.com
	Robert Paquin	$(651) 365-8542$	robert.paquin@ch2m.com
Document Production	Matt Knight	(763) 452-4729	mknight@srfconsulting.com
GIS	Carol Sersland	$(651) 365-8545$	carol.sersland@ch2m.com
	Kari Buckvold	$(773) 458-2895$	kariann.buckvold@ch2m.com
	Dan Tinklenberg	$(763) 452-4749$	dtinklenberg@srfconsulting.com

What is different from the original CRSP?

- Customized plans based on County's needs
- Individual outreach/engagement plans: individual meetings, group meetings, county specific workshop
- Expanded list of safety strategies: additional strategies, medium and higher cost countermeasures, maintain focus on effectiveness (crash reduction)
- Added emphasis on electronic deliverables: map showing all K + A crashes in each county (all systems), .kmz maps of all suggested safety projects
- Long timeframe for each Phase (18 months versus 9 months in original effort)
- Comprehensive analytical approach: High Crash + High Risk (Systemic)
- Preparation of a comprehensive database
- Research One-Pagers

Safety Countermeasures: Big Book of Ideas

Rural Segments

Strategy	Crash Reduction Factor*	Typical Installation Costs
Centerline Rumble Strip	40\% head-on/sideswipe crashes	\$3,600 per mile
Buffers Between Opposing Lanes	50% for all crashes \& 100% for head-on crashes [based on TH 5 in Lake Elmo, MN]	$\$ 150,000$ to $\$ 500,000$ per mile
Shoulder/Edgeline Rumble Strip	20\% run off road crashes	\$5,850 per mile
Safety Edge	5% to $10 \%{ }^{5} ; 8 \%$ to $16 \%{ }^{* *}$	
Enhanced Edgeline (6" \& 8')	10% to 45% all rural serious crashes	\$1,980 per mile
Shoulder Paving (2^{\prime}, 4', $\mathbf{6}^{\prime}$)	20% to 30% run-off-the-road crashes (with shoulder rumble) (2' only)	$\$ 54,000$ per mile $+\$ 5,850$ per mile (for Edge Rumble)
Clear Zone Maintenance/Enhancements		
Ditch/Embankment Improvements		\$500,000 to \$1M per mile

Notes:

- Crash reduction factors based on review of CMF Clearinghouse and other published research
${ }^{5}$ - For all crashes
${ }^{* *}$ - ISU - SPR RBI 3-014, August 2016

Centerline Rumble Strips tegies for Design Exceptions (FHWA, FHWA-SA-07-011)

Urban Intersections

Strategy	Crash Reduction Factor*	Typical Installation Costs
Echelon		
Continuous Flow Intersection (CFI)		
Signalized RCUT		
Confirmation Lights	25% to 84% reduction in violations	\$1,200 per two approaches
Traffic Enforcement Cameras (D3 Example)		
Pedestrian Countdown Times	25% vehicle/pedestrian crashes	\$12,000 per intersection
Leading Pedestrian Intervals	Up to 60% pedestrian/ vehicle crashes	\$600 per intersection
Curb Extensions	Increase in vehicles yielding to pedestrians	\$36,000 per corner
Center Island Medians	46% in vehicle/pedestrian crashes	\$24,000 per approach
Roundabout (including Mini Roundabout)	20\% to 50\% all crashes/ 60\% to 90% right-angle crashes	\$4,200,000 per intersection
Urbanization (make it feel urban)		
Rectangular Rapid Flash Beacon (RRFB)	75% of drivers yield to pedestrians	\$15,000
High-Intensity Activated crossWalk Beacon (HAWK)	69\% Vehicle/Pedestrian	\$50,000 to \$120,000
Flashing Yellow Arrow (FYA) --> Note: Permitted to FYA	19.4\% left turn crashes	
Turn Lanes (Offset, Channelized)	27\%	\$150,000 to \$500,000
Notes: * - Crash reduction factors based on review of CMF Clearinghouse and other published research		

Google Earth Maps

KMZ Maps of Roadway
Facilities and Crashes with
Popup Information

Research One-Pagers

Roadway Network Development

Goal: Develop a map with identified segments, intersections and curves for each county by the April $12^{\text {th }}$ meeting

Approach:

- We will segment your roadway network for you
- You provide feedback on the completed segmentation

Example Map: Kandiyohi County

Schedule

Outreach and Engagement

Goal: To further reduce K+A's by fostering stronger collaboration through a more individualized approach with each county.

Meetings:

- All county meetings
- One meeting in person
- Three meetings via webinar
- Individual county meetings
- Two meetings in person
- One Workshop
- Two meetings via webinar/conf call

- One optional County Board Presentation

April $12^{\text {th }}-$ Kick-Off Meeting

11am-2pm (lunch provided)

MnDOT St. Cloud Training Center

Additional Discussion Items:

- Facilitated Discussion: What you hope happens/doesn't happen in the CRSP update process?
- Highlights of Lessons Learned from Phase 1
- Results of Research Synthesis survey
- Crash Data Analytical Approach and Analyses of Results
- Summary of Phase 1 CRSP Safety Projects
- Discussion of Roadway Network Assessment

Next Steps

Next Meeting:
April 12, 2018 (11:00am-2:00pm) at the MnDOT Training Center in St. Cloud

We need from each county:

- Review segmented maps and provide feedback
- Begin planning for county Workshop date and location. (T,W,Th during Sept/Oct/early Nov.)
- Provide contact information for staff you would like involved to Renae Kuehl at rkuehl@srfconsulting.com

Questions?

- Mark Vizecky - MnDOT State Aid Mark.vizecky@state.mn.us 651-366-3839
- Howard Preston - CH2M
howard.preston@ch2m.com 651-365-8514

This page intentionally left blank

Phase 2 CRSP Updates

County Safety Workshop Overview Webinar

May 8, 2018

Skype

County Roadway Safety Plan Updates

Outreach and Engagement

Goal:

To further reduce K+A's by fostering stronger county collaboration through a more individualized approach with each county.

- All county meetings
- One in-person meeting
- Three webinar meetings
- Individual county meetings
- Two in-person meetings

- One safety workshop
- Two meetings via webinar or conf. call
- One optional county board presentation

Outreach and Engagement

		Phase 2	
	MEETING TITE	MEATING FORMAT	TOPICS
0	PRE-KICKOFF MEETING	All Counties Web Meeting	- Goals - Process - Schedule - Needs
1	KICX-OFF MEETING	All Counties In-Person Meeting	- CRSP update Review - What are you looking for from project? - P1 Lessons Leamed, approach, results and projects - P2 Roadwar Network Assessment
2	ROADWAY NETWORK REVIEW	Individual County In-Person Meeting	- Segments - Intersections - Curves - Missinedata needed fromecountr
3	WORKSHOP OVERVIEW	All Counties Web Meeting	- Overview of workshop goals - Phase 1 workshops review - Workshop options - Planning aperoach and schedule
4	WORKSHOP	Individual County Workshop	- Present crash analysis findings - Present systematic and high crash location analysis process - Review high priority locations identified - Review safety strategies being considered
5	STRATEGIES REVIEW	Individual County Web Meeting	- Review preferred strategies to include, with each county
6	RISK FACTORS REVIEW	All Counties Web Meeting	- Present identified risk factors for systematic analysis
7	PROPOSED PROJECTS REVIEW	Individual County In-Person Meeting	- Proposed projects for each segment, intersection and curve - Desired changes to projects
8	DRAFT PLAN REVIEW	Individual County Web Meeting	- Review content for the draft County Road Safety Plan - Discuss edits needed
9	COUNTY BOARD PRESENTATION (optlonal)	Individual County (16) Board Meeting	- Present CRSP approach and results to county board

Schedule

\square
Individual In-Person Meeting w/each County
\triangle Individual Web Meeting/Conference Calls w/each County
\square
All Counties In-Person Meeting
All Counties Web Meeting
\square Individual Workshops
County Board Presentation

We are here																		
Tasks	2018										2019							
	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Kickoff Meeting	0	1																
T1: Research \& Literature Review																		
T2: Review Existing Safety Plans																		
T3: Comprehensive Review of County Systems																		
T4: Crash Analysis																		
T5: Safety Strategies																		
T6: Safety Workshops			3					4										
T7: Safety Plans																		9
T8: OutreachtEngagement																		
T9: Project Management			\square															

County Road Safety Workshop: Alternative Formats and Audiences

Formats...choose one:
a) Featured Safety Strategy Presentation/Discussion
b) Site Locations Working Session
c) Featured Safety Strategy Presentation/Discussion + Site Locations Working Session
d) Board Presentation (pre- or post-CRSP Plan Development)
e) Board Presentation + safety stakeholders

General audiences:

- Safety stakeholders + county staff
- County staff only
- County board members

Potential Workshop Topics

- Workshop Goals and Introductions
- County Road Safety Plan Update and Safety Strategies Overview
- Overview of CRSP, MN TZA, Statewide Performance Measures, Data Driven Safety Analysis
- Proactive Systemic Safety Approach
- Implemented Safety Projects and County Implementation Approach
- County Crash Data Overview and Focus Areas
- Group Discussion: What is important to advance road safety in the County?
- Featured Infrastructure Safety Strategies Presentation \& Discussion
- Priority Site Location Discussions
- Next Steps

Example Agenda: McLeod County A) Featured Strategy Presentation/Discussion

9:00	Welcome, Introductions, and Workshop Goals
$9: 10$	Intro to CRSP/MN TZD Goals
	Data Driven Safety Analysis Discussion: What is important to advance road safety in the county?
$10: 45$	Overview of Proactive Systemic Safety Approach
$11: 00$	Implemented Safety Projects
$11: 20$	Featured Infrastructure Safety Strategies Discussion
$2: 00$	Adjourn

(Excludes Site Locations Working Session)

Example Agenda: Chisago County B) Site Locations Working Session

9:00	Welcome, Introductions, and Workshop Goals
$9: 10$	Intro to CRSP/MN TZD Goals
	Data Driven Safety Analysis the county?
10:00	Overview of Proactive Systemic Safety Approach
10:20	County Crash Data Overview and Focus Areas
$10: 50$	Priority Site Locations (2 Intersections, 2 segments)
$2: 30$	Adjourn

(Excludes featured presentation of safety strategies.)

Example Agenda: Chisago County B) Site Locations Working Session

Priority Site Location Discussion Format:

- County Site Overview [10 min.]
- Site Crash Facts [5 min.]
- Alternative Safety Strategy Discussion [20 min.]
- Summary [5 min.]

Locations:

1. Intersection of CSAH $25 / 292^{\text {nd }}$ Ave, City of Lindstrom (at the High School)
2. Intersection of CSAH 1/CSAH 39, Rush City
3. Segment of CSAH 7 from CSAH 39 (Fairfield Ave) to CSAH 30 (Forest Blvd), Rush City
4. Segment of CSAH 30 from $360^{\text {th }}$ St to $420^{\text {th }}$ St, North Branch

Example Agenda: Wright County
 C) Featured Strategy Presentation/Discussion + Site Locations Working Session

9:00	Welcome, Introductions, and Workshop Goals
$9: 10$	Intro to CRSP/MN TZD Goals
	Data Driven Safety Analysis Discussion: What is important to advance road safety in the county?
	Overview of Proactive Systemic Safety Approach
$10: 55$	County Crash Data Overview and Focus Areas
$12: 30$	Priority Site Locations ((1 segment, 2 intersections)
$3: 30$	Adjourn

Example Agenda: Otter Tail County D and E) AM Board Meeting \& Safety Stakeholder Workshop

Board Meeting	
9:35	Welcome, Introductions, and Workshop Goals
9:40	Intro to CRSP/MN TZD Goals
	Overview of Proactive Systemic Safety Approach
10:10	County Crash Data Overview and Focus Areas
11:00	Adjourn
Safety Workshop	
$1: 00$	Welcome, Introductions, and Workshop Goals
$1: 10$	Intro to CRSP/MN TZD Goals
2:10	Discussion: What is important to advance road safety in the county?
$2: 55$	Overview of Proactive Systemic Safety Approach
4:00	Implemented Safety Projects

Condenses Workshop agenda. Excludes the Site Location Discussion

Phase 1 Workshop Format Summary

Phase 1 Workshop Format Summary

Potential Workshop Objectives

1. Create a shared understanding of the County Road Safety Plan update process and its importance.
2. Create a shared understanding of the County's roadway safety approach.
3. Solicit and share safety stakeholder perspectives to reduce severe crashes in the County.
4. Develop a more comprehensive understanding of featured infrastructure safety strategies to reduce severe crashes in the County.
5. Collaboratively explore infrastructure safety strategies for priority site locations.

Workshop Audience: Example Invite List

- County engineers and maintenance staff
- County Administrator
- County Commissioners
- Safe Roads Coalition
- Regional TZD representative
- City reps including Consulting engineer acting as city engineer
- Law enforcement (MSP, Police, Sheriff)
- Emergency medical response
- Tribal governments (if applicable)
- MnDOT District staff, DSAE, traffic engineering and planning
- FHWA Safety Engineer Will Stein

Next Steps: County Safety Workshop Planning

\checkmark Determine workshop location and date
○ T, W, Th in September/October/November
\checkmark Identify County's preferred workshop objectives.

- Key messages important to communicate?
\checkmark Determine workshop audience and invitees
- County sends invitation and cc. Renae/Cheri
\checkmark Confirm featured infrastructure safety strategies:
- For plan consideration
- To feature in workshop

Your decisions are part of the critical path!

Questions?

- Mark Vizecky - MnDOT State Aid Mark.vizecky@state.mn.us 651-366-3839
- Cheri Marti Cheri.f.marti@gmail.com 612-616-4280
- Renae Kuehl RKuehl@srfconsulting.com 763-249-6783

THANK YOU!

This page intentionally left blank

Appendix C - Workshop Material

This page intentionally left blank

WORKSHOP AGENDA

Clay County Roadway Safety Workshop

WORKSHOP DATE:	Wednesday, October 31, 2018
MEETING TIME:	8:15 Registration; 8:30 AM - 2:00 PM Workshop (lunch provided)
LOCATION:	Clay County Law Enforcement Center
	Larson Rm. 1013
	911 11th St. N.,
	Moorhead, MN

8:15	Registration and Refreshments	
8:30	Welcome, Introductions and Workshop Goals - Create a shared understanding of CRSP and Clay County's infrastructure roadway safety approach - Share safety stakeholder perspectives to reduce severe crashes - Develop understanding of and collaboratively explore featured, proven infrastructure strategies for CRSP plan consideration.	Cheri Marti, Jacobs/ Dave Overbo County Engineer
8:40	County Roadway Safety Plan (CRSP) Background - Overview of CRSP \& Data-Driven Safety Analysis Video - Discussion: What is important to advance road safety in the county? - Overview of Proactive Systemic Safety Approach	MnDOT All Howard Preston, Jacobs
9:45	Break (15 Min.)	
10:00	- Implemented Safety Projects \& Clay County Safety Approach	Howard Preston/ Dave Overbo
10:20	- Clay County Crash Data Overview \& Safety Focus Areas	Howard Preston
10:40	Featured Infrastructure Safety Strategies Discussion	
11:45	Lunch (30 Min.)	
12:15	Priority Site Location Discussions (approx. times) - County Site Overview [10 min.] - Site Crash Facts [5 min.] - Alternative Safety Strategy Discussion [20 min.] - Summary [5 min.]	Dave Overbo \& Safety Stakeholders Howard All
12:20	1.) Intersection - CSAH 12 \& CSAH 52	
1:05	2.) Intersection - CSAH 10 and CSAH 31	
1:50	Wrap Up: Closing Comments + Workshop Evaluation	
2:00	Adjourn	

This page intentionally left blank

Clay County
 County Roadway Safety Plan Workshop

October 31, 2018

County Roadway Safety Plan Updates

Discussion Goals and Agenda Review

Goals:

- Create a shared understanding of CRSP and Washington County's infrastructure roadway safety approach
- Share safety stakeholder perspectives to reduce severe crashes.
- Develop understanding of and collaboratively explore proven infrastructure strategies for CRSP plan consideration.

Agenda Review

Handouts Review

- Agenda
- PPT Slides
- County Rural Crash Tree
- County Urban Crash Tree
- Statewide/County Focus Area Tables
- Big Book of Ideas
- Site Location Packets
- Evaluation Form
- CRSP One-pager
- Research/Strategy Onepagers
- TZD One-pager
- Data-Driven Safety Analysis (DDSA) Onepager (FHWA)

What is a County Roadway Safety Plan or "CRSP?"

- Switching from a reactive to a

 proactive approach- CRSP Identifies priority location-specific safety concerns and suggested priority infrastructure improvements.
- County segments, curves, \& intersections
- Locations that are most at risk
- Proven safety strategies
- In 2014, initial CRSP plan created for all 87 MN counties in partnership with MnDOT and the Federal Highway Administration.
- The "CRSP Update" is an effort to
 continue to advance safety on county roadways.

Data-Driven Safety Analysis:

 Minnesota Case Study Video

Why the need for County Roadway Safety Plans?

- 60% of severe crashes (fatality or serious injury) occur on local roadways; most severe are on county roads.
- Local agencies are responsible for more than 90% of the state's roadway miles.
- The majority of roadway safety investments have been made on the state system.
"It will be impossible to achieve Minnesota's long-term goal of zero fatalities if minimal investment is made to address safety on local roadways" Mitch Rasmussen, Assistant Commissioner State Aid Division

Sofety Plan

What is the goal of County Road Safety Plans or CRSP ?

To support the statewide initiative of moving Minnesota Toward Zero Deaths Program through continued reduction of fatalities and serious injuries on county roadways.

- Minnesota TZD Program:
- Even one traffic death is unacceptable
- Interdisciplinary approach: Engineering, Enforcement, Education, Emergency medical and trauma services
- Partnership with community safety stakeholders
- CRSP aligns with the Minnesota Strategic Highway Safety Plan (SHSP)
- Support TZD Goal of fewer than 300 fatalities and 850 serious injuries by 2020

CRSP Funding

- Every Year, Minnesota receives $\sim \$ 30$ Million Federal Highway safety funding
- Highway Safety Improvements Program (HSIP)
- Minnesota shares HSIP funding with the local governing agencies (about 50\%)

What are the initial results of county road safety improvements?

CRSP Update - Phase 2 (16 Counties)

Data Analysis Goals

- Conducting a data-driven safety analysis of the county roadway system
- Identifying and prioritizing candidate locations for safety investment
- Developing safety projects - specific strategies at specific
 locations

Your thoughts...

What is important to advance road safety in the county?

Overview of Proactive Systemic Safety Approach

County Roadway Safety Plan Updates

Why Proactive Systemic Safety Approach?

Traditional method: "high crash" locations

- Concern: no locations met the high crash designation

The solution for local system safety analyses = Proactive Systemic Risk Analysis

What is a Systemic Risk Analysis?

- Analytical approach identifies and prioritizes safety deficiencies on roads based on risk of crash
- Identifies risk factors based on roadway and traffic characteristics
- Prioritizes the road system for safety investment by documenting the number of risk factors present at each location.

What is the benefit of a systemic process?

- It works
- It leads to implementation
- It allows agencies to proactively deploy safety projects on at-risk locations.

With the systemic process, the answer to "How many people have to die before you do something?" - is Zero!

Risk Factor Identification

Segments:

 Departure- Traffic Volume
- Critical Curve Radius
- Access Density
- Edge Risk Assessment

Risk Factor Identification

Curves:

- ADT Range
- Radius Range
- Severe Crash on Curve
- Intersection on Curve
- Visual Trap on Curve

Risk Factor Identification

Intersections

- Skewed Approach
- On/near curve
- Volume
- Proximity to railroad crossing
- Proximity to last STOP sign
- Intersection related crashes
- Commercial Development in Quadrant

Systemic Safety Approach Works!

Higher priority segments have higher crash densities

Sofety Plan

Project Form \& Impact of Having a Safety Plan

Over a 4-year period:

- Over 85\% of Minnesota counties secured HSIP funding for at least one project.
- More than \$60M of HSIP funds were directed to supporting the implementation of safety projects on the county system.

Implemented Safety Projects and County Implementation Approach

County Roadway Safety Plan Updates

ATP 4 Implemented Safety Projects

Project Description	Number of projects	Suggested H5IP Award
Segments		
Total Edgeline Striping	22	$\$ 6,591,821.40$
Total Narrow Shoulder	13	$\$ 3,219,910.90$
Total Rumble Strips	0	$\$ 0.00$
Total Sign Installation	0	$\$ 0.00$
Subtotal Lane Departure Projects	35	$\$ 9,811,732.30$
Curves		
Total Chevron Projects	8	$\$ 356,914.80$
Total Geometric Improvements	1	$\$ 800,000.00$
Total Curve Projects	9	$\$ 1,156,914.80$
Intersections		
Intersection Signing	2	$\$ 205,515.00$
Interseciton Lighting	4	$\$ 1,233,790.00$
Intersection Geometric Improvements	1	$\$ 856,000.00$
Total Intersection Projects	7	$\$ 2,295,305.00$
Total Projects	51	$\$ 13,263,952.10$

Sofety Plon
 Toword $\mathbf{z \in B O}$ Deans

Clay County Crash Data Overview

County Roadway Safety Plan Updates

Clay County Crash Tree - Rural

Clay County Crash Tree - Rural

County Versus State Crash Data - Rural

Crash Statistics (Severe Crashes)	Statewide Greater Minnesota	$\begin{gathered} \text { Clay } \\ \text { County } \end{gathered}$
State vs. Local System	38\% vs 62\%	62\% vs. 38\%
On County System	63\%	68\%
Rural vs. Urban	57\% v. 42%	94\% vs. 6\%
Segment Related	63\%	44\%
Lane Departure	71\%	71\%
Head - On	17\%	0\%
Run-off-Road	83\%	100\%
Curve Related	47\%	20\%
Intersection Related	31\%	31\%
Thru - STOP	54\%	60\%
Right Angle	43\%	67\%

Clay County Crash Tree Rural Key Takeaways

- Focus on supporting safety initiatives on local systems especially on county roadways
- Primary focus on Rural County Roadways
- Primary focus on Lane Departure Crashes along Rural Road segments and horizontal curves
- Secondary focus on Angle Crashes at Rural Thru-STOP controlled intersections

Clay County Crash Tree - Urban

County Versus State Crash Data - Urban

Crash Statistics (Severe Crashes)	Statewide Greater Minnesota	$\begin{gathered} \underline{\text { O}_{\text {ay }}} \\ \text { County } \end{gathered}$
State vs. Local System	38\% vs. 62\%	62\% vs. 38\%
On County System	45\%	68\%
Rural vs. Urban	57\% vs. 42%	94\% vs. 6\%
2-Lane Undivided	40\%	100\%
Segment Related	58\%	100\%
Single vs. Multi Vehicle	33\% vs. 57\%	100\% vs. 0\%
Head-On vs. Rear End	33\% v5 7\%	0\% vs. 0\%
Multi-Lane \& Divided	49\%	0\%
Intersection Related	75\%	0\%
Signal Control	66\%	0\%
Right Angle Collision	44\%	0\%
Pedestrian \& Bicycle Crashes	25\%	0\%
2 - Lane Undivided	25\%	0\%
Segment vs. Intersection	48\% vs. 46%	0\%
Signal Control	33\%	0\%
Speed Limit - 30mph	45\%	0\%
Multi-lane \& Divided	63\%	0\%
Segment vs. Intersection	27\% vs. 67\%	0\%
Signal Control	73\%	0\%
Speed Limit - 30mph	58\%	0\%

Clay County Crash TreeUrban Key Takeaways

- Too few severe urban crashes to identify statistically reliable trends -Need to also consider statewide values
- Need to focus on BOTH 2-Lane Undivided and Multilane/Divided facilities
- On 2-Lane undivided facilities, the majority of crashes are segment related involving multiple vehicles and the most common type of crash is a Head-On
- On Multi-Lane Divided facilities, the majority of crashes are intersection related with traffic signal control and the most common type of crash is a Right Angle collision
- The majority of Pedestrian/Bicycle crashes occur on Multi-Lane/ Divided facilities at intersections with traffic signal control with a 30 MPH speed limit

Clay County Infrastructure Safety Strategies

Big Book of Ideas

Rural Intersections

All-Way Stop/Yield

Crash Reduction Factor

- Not Available

Typical Installation Costs

- \$1,000 per intersection

Rural Intersection Conflict Warning System (RICWS)

Crash Reduction Factor

- 50\% all crashes
- 75\% severe right angle crashes
Typical Installation Costs
- \$75,000 to $\$ 125,000$ per intersection

Roundabout

Crash Reduction Factor

- 20\% to 50\% all crashes
- 60% to 90% right-angle crashes

Typical Installation Costs

- \$1,000,000 per intersection

Turn Lanes (Offset, Channelized)

Crash Reduction Factor

- Create positive offset left turn lanes ~35\% (all + severe crashes)
- Channelize right turn lanes 43\%-60\% (all crash severities)

Typical Installation Costs

- \$75,000-\$250,000

LED Stop Signs

Crash Reduction Factor

- Angle crashes: 0\% to 71\%

Typical Installation Costs

- \$2,000 to \$6,000 per intersection

Remove Skew

Crash Reduction Factor

- 0\% to 33\%

Urban Segments

Access Management

Crash Reduction Factor

- 5% to 31%

Typical Installation Costs

- \$360,000 per mile

Dynamic Speed Feedback Sign

Crash Reduction Factor

- 5\%-7\% all crashes

Typical Installation Costs

- \$30,000 per location

Rectangular Rapid Flash Beacon (RRFB)

Crash Reduction Factor

- 75\% of drivers yield to pedestrians

Typical Installation Costs

- \$15,000

Sofetu Plon

Clay County Site Location Discussions

County Roadway Safety Plan Updates

Site Location Discussions

For each Site:

- County Overview (10 Mins)
- Crash Facts (5 Mins)
- Alternative Safety Strategies (30 Mins)
- Short Term Strategies
- Long Term Strategies
- Summary (5 Mins)

Wrap-Up

Next Steps:

- Complete systemic roadway risk-factors and high-crash data analyses
- Develop safety recommendations for priority crash locations
- Develop County Road Safety Plan draft report

Thank you for your participation and input!

Questions?

David Overbo- Clay County, County Engineer Daivd.overbo@co.clay.mn.us 218-299-5099

Tara Olds - MnDOT State Aid
tara.olds@state.mn.us 651-366-3830

This page intentionally left blank

County Roadway Safety Plan Updates

The Big Book of Ideas

Prepared for:
Clay county

List of Strategies

Rural Segments

- Safety Edge
- Enhanced Edgeline ($6^{\prime \prime}$ \& 8")
- Shoulder Paving (2', 4', 6’)
- Clear Zone Maintenance/Enhancements
- Ditch/embankment Improvements
- Separated Bike Trail/Path

Rural Curves

- Chevrons
- Delineators
- High Friction Surface Treatment (HFST)
- Dynamic Curve Signing
- Lighting
- Clear Zone Maintenance/Enhancements
- Reconstruct [TT to a Single T intersection]

Rural Intersections

- Upgrade Signs and Pavement Markings
- Streetlights (and approaches)
- All-Way Stop/Yield
- Restricted Crossing U-Turn (RCUT) Intersection
- Rural Intersection Conflict Warning System (RICWS)
- Offset T-Intersection
- Roundabout
- Turn Lanes (Offset, Channelized)
- Continuous Green T
- Mainline Dynamic Warning System
- Median Acceleration Lanes (MALs)
- LED Stop Signs
- Remove Skew / Realign Intersections

Urban Segments

- Road diet [3- \& 5-Lane Conversions]
- 3/4-Intersection
- Divided Roadway
- Access Management
- Bike Lane/Boulevard
- Urbanization (make it feel urban)
- Dynamic Speed Feedback Sign
- Sidewalks

Urban Intersections

- Echelon
- Continuous Flow Intersection (CFI)
- Signalized RCUT
- Confirmation Lights
- Pedestrian Countdown Timers
- Leading Pedestrian Intervals
- Curb Extensions
- Center Island Medians
- Roundabout
- Mini Roundabout
- Urbanization (make it feel urban)
- Rectangular Rapid Flash Beacon (RRFB)
- High-Intensity Activated crossWalk Beacon (HAWK)
- Flashing Yellow Arrow (FYA)
- Reflective Streetlight Backplate
- Turn Lanes (Offset, Channelized)
- Zig Zag Pavement Markings
- Pedestrian Education/Visibility

Rural Segments

Strategy	Crash Reduction Factor*	Typical Installation Costs
Safety Edge	5\% to 10\% ${ }^{\text {s }}$	$\$ 10,000$ to $\$ 20,000$ per mile
Enhanced Edgeline (6" \& 8")	10% to 45% all rural serious crashes (6")	\$2,000 per mile
Shoulder Paving (2', 4', 6')	20\% to 30\% run-off-the-road crashes (with shoulder rumble) (2' only)	$\$ 54,000$ per mile + $\$ 5,850$ per mile (for Edge Rumble)
Clear Zone Maintenance/Enhancements	Fatal, Serious \& Minor Injury Crashes: Increase of 28\% to Decrease of 18\%	$\$ 50,000$ to $\$ 500,000$ per mile
Ditch/Embankment Improvements	32% to 41% (Adding new guardrail to embankments - Run off road crashes)	\$500,000 to \$1M per mile
Bike Paths/Trails	Not Available	$\begin{aligned} & \$ 50,000 \text { to } \$ 150,000 \text { per } \\ & \text { mile } \end{aligned}$
Notes: * - Crash reduction factors based on review of CMF Clearinghouse and other published research §- For all crashes		

Safety Edge
Source: FHWA Public Roads (Sept/Oct 2014; Vol. 78 No. 2)

Enhanced Edgeline

Source: Low-Cost Treatments for Horizontal Curve Safety (FHWA, FHWA-SA-07-002)

Enhanced Edgeline

Source: Low-Cost Treatments for Horizontal Curve Safety (FHWA, FHWA-SA-07-002)

Shoulder Paving

Source:https://mntransportationresearch.files.wordpress.com/2014 /06/dsc_8665nv.jpg?w=672\&h=372\&crop=1

Clear Zone Maintenance
Source:https://nativeengineering.files.wordpress.com/2016/12/3.jpg?w =300\&h=204

Separated Bike Path

Source: http://www.bikethebyways.org/lakes-to-locks-passage/rouses-point-keeseville/

Ditch/Embankment Improvements
Source: http://www.roadex.org/wpcontent/uploads/elearning/drainage/5/521.jpg

Rural Curves

Strategy	Crash Reduction Factor*	Typical Installation Costs
Chevrons	20% to 30%	$\$ 3,960$ per curve
Delineators	18% to $34 \%^{\dagger}$	$\$ 500$ per curve
High Friction Surface Treatment (HFST)	All Crash Types -24% Wet Road Crash Type -52%	$\$ 25$ to $\$ 35$ per square yard
Dynamic Curve Signing	Not Available	$\$ 50,000$ per curve
Lighting	See Rural Intersections	See Rural Intersections
Clear Zone Maintenance/Enhancements	Fatal, Serious \& Minor Injury Crashes: Increase of 28% to Decrease of 18%	$\$ 10,000-\$ 250,000$ per curve
Reconstruct \rightarrow TT to Single T Intersection	Not Available	$\$ 150,000-\$ 300,000$ per curve
Notes: - - Crash reduction factors based on review of CMF Clearinghouse and other published research - Non-intersection, head-on, run-off-road, sideswipe, Nighttime crash types		

Chevrons

Source: Low Cost Traffic Engineering Improvements: A Primer (FHWA, FHWA-OP-03-078)

High Friction Surface Treatment
Source: Minnesota LTAP Technology Exchange (Fall 2014, Vo. 22 No. 4)

Delineators
Source: Low-Cost Treatments for Horizontal Curve Safety (FHWA, FHWA-SA-07-002)

Dynamic Curve Signing

Source: FHWA, Sequential Dynamic Curve Warning System: Product Safety Performance Evaluation (2011)

Street Lights
Source: Mitigation Strategies for Design Exceptions (FHWA, FHWA-SA-07-011)

TT to T Intersection Reconstruction
Source: MnDOT 2015 Traffic Safety Fundamentals Handbook

Clear Zone Maintenance
Source:https://nativeengineering.files.wordpress.com/ 2016/12/3.jpg?w=300\&h=204

Rural Intersection

Strategy	Crash Reduction Factor*	Typical Installation Costs
Upgrade Signs and Pavement Markings	40% upgrade of all signs and pavement markings/ 15% for STOP AHEAD pavement marking	\$2,640 per approach ${ }^{\dagger}$

Upgrade Signs and Pavement Markings
Source: Minnesota CRSP

All-Way Stop Controled intersection
Source: http://www.ite.org/uiig/images/type/clip_image010.jpg

Rural Intersection Conflict Warning System

Source: MnDOT Traffic Engineering
(http://www.dot.state.mn.us/trafficeng /signals /conflictwarning.html)

Street Lights
Source: Mitigation Strategies for Design Exceptions (FHWA, FHWA-SA-07-011)

Restricted Crossing U-Turn Intersections
Source: Bolton and Menk

Offset T-Intersection

Source: Alternative Intersections/Interchanges: Informational Report (FHWA, FHWA-HRT-09-060)

Roundabout
Source: Innovative Intersection Safety Improvement Strategies and Management Practices: A Domestic Scan (FHWA, FHWA-SA-06-016)

Offset Right Turn Lane
Source: Review of lowa's Rural Intersection Crashes: Application of Methodology for Identifying Intersections for IDS (MnDOT, MN/RC 2007-27)

Continuous Green T Intersection

Mainline Dynamic Warning System

Source: Google Earth - US 169 \& Mille Lacs County Road 11

Median Acceleration Lane (MAL)
Source: Google Earth - US 169 \& MNTH 68 Mankato MN

LED Stop Sign

Source: MnDOT - MNTH 95 \& Chisago County State Aide Highway 9

Remove Skew

Source: Google Earth

Urban Segments

Strategy	Crash Reduction Factor*	Typical Installation Costs
Road Diet [3- \& 5-Lane Conversions]	30\% to 50\%	$\$ 48,000$ per mile [three-lane] $\$ 54,000$ per mile [five-lane] $+\$ 36,000$ per signalized intersection for updates (for example, loop and signal head placement)
3/4-Intersection	25\%	\$150,000 per location
Divided Roadway	22\% (HSM §13.4.2.6)	\$5M to \$10M per mile
Access Mgmt (Access Mgmt Plan)	5\% to 31\%	\$360,000 per mile§
Bike Lane/Boulevard	Approximately 60\% (Some studies have noted increases)	Repurposing existing road $\sim \$ 5,000$ per mile New Construction of Separated Boulevard $\$ 500,000$ per mile
Urbanization (make it feel urban)	Not Available	\$500,000-\$1,000,000 per mile
Dynamic Speed Feedback Sign	All crashes 5\%-7\%	\$30,000 per location
Sidewalks	Not Available	\$5 to \$10 per square foot
Notes: * - Crash reduction factors based on review of CMF Clearinghouse and other published research § - For management of unsignalized intersection movements within a corridor that has a divided median. Typical project may include minor street diverters, signed turn restrictions, and median closings.		

Road Diet

Source: Bike Walk Twin Cities

$3 / 4$ Intersection
Source: Alternative Intersections/Interchanges: Informational Report (FHWA, FHWA-HRT-09-060)

Divided Roadway
Source: Flexibility in Design (FHWA)

Access Management

Source: Mitigation Strategies for Design Exceptions (FHWA, FHWA-SA-07-011)

Bicycle Boulevard
Source: Minnesota's Best Practices for Pedestrian/Bicycle Safety (MnDOT, Report 2013-22)

Rural Design - TH 2 Approaching Floodwood, MN

Urbanization

Source: Google Street View

Bike Lane

Source: Minnesota's Best Practices for Pedestrian/Bicycle Safety (MnDOT, Report 2013-22)

Urban Design - TH 2 in Floodwood, MN

Dynamic Speed Feedback

 SignSource: http://1x57.com/wp-content/uploads/2011/06/25-mph-regulatory-speed-limit-sign-with-radar-sign1-173x300.jpg

Sidewalk
Source: http://locallygrownnorthfield.org/post/tag/sidewalks

Urban Intersections

Strategy	Crash Reduction Factor*	Typical Installation Costs
Echelon	Not Available	\$10-\$15 million
Continuous Flow Intersection (CFI)	Not Available	\$4-\$7 million
Signalized RCUT	Not Available	\$1 to \$5 million
Confirmation Lights	25% to 84% reduction in violations	\$1,200 per two approaches
Pedestrian Countdown Times	25% vehicle/pedestrian crashes	\$12,000 per intersection
Leading Pedestrian Intervals	Up to 60\% pedestrian/ vehicle crashes	\$600 per intersection
Curb Extensions	Increase in vehicles yielding to pedestrians	\$36,000 per corner
Center Island Medians	46% in vehicle/pedestrian crashes	\$24,000 per approach
Roundabout	20\% to 50\% all crashes/ 60% to 90% right-angle crashes	\$4,200,000 per intersection
Mini Roundabout	20\% to 50\% all crashes/ 60% to 90% right-angle crashes	$\$ 40,000$ to 500,000 per intersection
Urbanization (make it feel urban)	Not Available	$\begin{aligned} & \text { \$250,000 - \$500,000 per } \\ & \text { intersection } \end{aligned}$
Rectangular Rapid Flash Beacon (RRFB)	75% of drivers yield to pedestrians	\$15,000
High-Intensity Activated crossWalk Beacon (HAWK)	69\% Vehicle/Pedestrian	\$50,000 to \$120,000
Flashing Yellow Arrow (FYA) --> Note: Permitted to FYA	19.4\% left turn crashes	
Reflective Streetlight Backplate	15\% reduction in claims	\$2500 per intersection
Turn Lanes (Offset, Channelized)	27\%	\$150,000 to \$500,000
Zig Zag Pavement Markings ${ }^{\text {a }}$	Not available	\$91,000 ${ }^{\text {a }}$
Pedestrian Education/Visibility	Not Available	Not Available
Notes: * - Crash reduction factors based on review of CMF Clearinghouse and other published research a - Virginia DOT Report: https://www.railstotrails.org/resourcehandler.ashx?id=4063		

Echelon Intersection

Source: http://www.fhwa.dot.gov/publications/research/safety/09060/images/09060_img_222.jpg

Continuous Flow Intersection

Source: http://www.fhwa.dot.gov/publications/research/safety/04091/images/fig096.gif

Signalized RCUT
Source: Kentucky Transportation Cabinet; Congestion Toolbox

Pedestrian Countdown Timer

Source: Oakland MTC: Bicycle/Pedestrian Safety Toolbox

Curb Extensions

Source: http://www.fhwa.dot.gov/publications/research/safety/ pedbike/05085/images/fig205.jpg

Confirmation Lights
Source: MnDOT 2015 Traffic Safety Fundamentals Handbook

Leading Pedestiran Interval
Source: https://bikeuptowndotorg.files.wordpress.com/2012 /04/2012-04-15-09-56-491.jpg

Center Island Medians

Source:http://safety.fhwa.dot.gov/provencountermeasures/images/sa1 2_011.jpg

Roundabout

Source: Innovative Intersection Safety Improvement Strategies and Management Practices: A Domestic Scan (FHWA, FHWA-SA-06-016)

Urbanization

Source: Google Earth Street View

Urbanization

Source: Google Earth Street View

Mini Roundabout

Source:

Rectangular Rapid Flash Beacon

Source: http://www.fhwa.dot.gov/publications/publicroads/11mayjun /images/do1.jpg

HAWK

Source: http://www.fhwa.dot.gov/publications/research/safety/10045/ images/hawk_027.jpg

Flashing Yellow Arrow and Reflective Backplate
Source: http://safety.fhwa.dot.gov/newsletter/safetycompass/2012 /winter/images/rrb.png

Zig Zag Pavement Markings
Source: VDOT https://www.railstotrails.org/resourcehandler.ashx?id $=4063$

Channelized Right Turn Lane
Source:http://www.ops.fhwa.dot.gov/publications/fhwahop12004/images/c4 b.jpg

Pedestrian Education/ Visibility

Source: http://exchange.aaa.com/safety/pedestrian-safety/tips-pedestriansafety/

This page intentionally left blank

Clay County Safety Workshop

WORKSHOP DATE: Wednesday, October 31, 2018
MEETING TIME: 8:15 AM Registration;
8:30 AM - 2:30PM Safety Stakeholder Workshop;
LOCATION: Clay County Law Enforcement Center $91111^{\text {th }}$ Street North, Moorhead, MN Larson Room 1013

Attendees

- Anna Pierce, FM Metro COG
- Bob Zimmerman, City of Moorhead
- Bryan Green, Clay County
- Chris Ellingson, Hawley Elementary School
- Chuck Backes, MN State Patrol
- David Overbo, Clay County
- Deric Swenson, Moorhead Police Department
- Erik Hove, Clay County
- Frank Gross, Clay County Commissioner
- George Peters, Cromwell Township
- Jenny Morgan, Clay County
- Luke Champa, FM Metro COG
- Mark Empting, Clay county Sheriff's Office
- Mary Safgren, MnDOT
- Nathan Gannon, MnDOT SA
- Stephen Larson, Clay County
- Tom Trowbridge, City of Moorhead
- Trudy Kordosky, MnDOT
- Wayne Lepper, Highland Grove Township

Consultant Team

- Tara Olds, MnDOT
- Girma Feyissa, MnDOT
- Howard Preston, CH2M
- Cheri Marti, CH2M
- Nicole Buehne, SRF

Workshop Goals

Welcome, Introductions, and Workshop Goals

- Create a shared understanding of CRSP and Clay County's infrastructure roadway safety approach
- Share safety stakeholder perspectives to reduce severe crashes
- Develop understanding of and collaboratively explore featured, proven infrastructure strategies for CRSP plan consideration.

County Roadway Safety Plan (CRSP) Updates

County Roadway Safety Plan (CRSP) Background

- Tara gave an overview of CRSP's

Overview of CRSP \& Data-Driven Safety Analysis Video

- Tara gave an overview of the CRSP
- Of the 50%, how is the funding prioritized among Minnesota counties?
- Solicitation period opens. MnDOT aggregates based on crashes in each of the region. Distribution of funds to the proportion of crashes. If all the money is not used in other regions than it is disaggregated.
- In District 4:
- 12 Counties
- Received approximately $\$ 1.2$ million
- Assume that these numbers on the trend line consider more vehicles on the road and population increase.

Discussion: What is important to advance road safety in the county?

- Local input on what improvements could be made, whether infrastructure or not.
- Farmers concerns are not represented (Beets, Corn, etc. Not just Beet farms, we must consider all agriculture.)
- Receive multiple calls from locals on beet trucks. There are two sides to each.
- Beet trucks and enforcement - overweight
- Consider the beet hauling requirements and the drivers. People drive so fast around these tractors that cannot run the road speed, which cause safety concerns. Commercial vehicles require CDL, but beet truckers do not require it. First haul operation for beet truckers can be as young as 16 . It also does not require a license even though it's the same weight. This also brings up the concern that beet haulers may be driving with a revoked license because additional licensing is not required (like a CDL). The first haul is around 12 hours of work.
- Specific industries and their impact on roadways.
- Share the road.
- TZD Coalition - Grants were dropped because the office of traffic safety did not support local county messages. A new coalition was created because the funding was too specific (roadway safety, farming safety, etc.). They preferred seatbelt, roadway safety, but very specific.
- Surveyed EMS and first responders received specific roads, but this wasn't supported by TZD Coalition. You are not provided pamphlets or other supportive materials funded by the grant money.
- Access Management and better coordination among jurisdictions.
- Becoming more and more of an issue at the county planning level. Whenever there is an access on the state system, there seems to be a disconnect between the county applying and the state. How do you consider what everyone wants before these permits are approved?
- Rural areas' seatbelt use is low. The state shows 93% seat belt use. However, surveys show they are in the low 60's.
- Not a lot of businesses are enforcing seatbelt in the office.
- Field to field - no seatbelt requirements. No statute exists requiring what a "field to field" means. Some are 15 miles away.
- Distracted Driving
- Speed - Hasn't been a large factor in the County. Funds were reduced to the county since it is not within the top 13 counties with speed related crashes.
- Continuing education. What they learn now is quite extensive, however continuing education would be effective. Educators are through the school district. There is only a 30 -hour requirement and that's it. Partnership between driver's education programs and enforcement would be great to send a positive message.
- Moorhead and Clay County sponsors a parent/student requirement to help with the education. Parents must attend a 3-hour course in Minnesota.
- Stop signs versus yield signs. Yield signs on CR 2 - West of Buffalo River. Why is this just a yield sign? Traffic is barreling though.
- Severe crashes vs. other crashes
- Bike/Ped from Farmville to Moorhead

Overview of proactive Systemic Safety Approach

- Howard gave an overview of the proactive safety approach

Implemented Safety Projects \& Kandiyohi Safety Approach

- Mumble Strips
- 9 locations
- 6-inch-wide edgeline
- The County is deciding whether to implement this throughout the County.
- Paved shoulders south of Glyndon on CR 14.
- Tie these projects to paving the mainline
- Targeted intersection with crashes. For example, using lighting (8 alone this year)
- Stop Signs - One of the topics we should discuss today. Call from a caller that said the stop sign didn't blink, so they didn't think they had to stop. Drivers are now assuming that ALL stop signs should blink.
- Many rural roads do not have turn lanes.

Clay County Crash Data Overview \& Safety Focus Areas

- Howard gave an overview of the crash data and safety focus areas.
- Rural versus urban is based on law enforcement and what it is written on the reports, not the 5,000 population.

Featured Infrastructure Safety Strategies Discussion

- All-Way Stop/Yield
- Not an overall crash reduction. Increasing levels of intersection control will not increase safety.
- All-way stops work best at high volumes.
- Fewer than 15% of people stop
- Low volume gravel roads on CR 19 may need a yield versus a stop sign.
- The County installed yields at heavily traveled summer roads (CR 2) in Lakes County.
- Consistency would best in application of signage
- Rural Intersection Conflict Warning System (RICWS)
- CR72/TH9 - a major intersection. For a while, MnDOT installed a flashing sign. MnDOT does not use the RICWS because it has a 6000 ADT threshold. Virtually all expressways have larger volumes so MnDOT tends to not install them.
- This began as a warning for the mainline. Later, the use expanded to include the minor line. However, the minor line warning may be more complex.
- What is the point of the illuminated text on the diamond?
- There are different design options.
- Roundabout
- Requires a 40M volume cross section and a previous right angle crash
- Mini Roundabout (added) - Less cost and an alternative depending on thresholds.
- LED stop signs
- Requests from elected officials and the public.
- Many assume that if you have run the stops then LED stops will help.
- Public really likes this, but County would like a checklist of where to put this and when.
- Transverse Rumbles
- For every research that you can find that says they are effectives, another report will say they aren't.
- Remove a Skew
- Access Management
- Dynamic Speed Feedback Sign
- The County would consider this on the rural to urban transitions.
- Rectangular Rapid Flash Beacon (RRFB)
- Marking and signing crosswalks at uncontrolled intersections is not safe.
- Few locations to convert 4-lanes to 3-lanes with middle turn lane.
- Moorhead completed a few. There's been mixed feelings towards it.

Intersection - CSAH 12 and CSAH 52

- Existing Condition
- Heavy traffic intersection.
- Gravel pits on the east side.
- Large trucks drive along it.
- Visibility is poor due to skew
- Vertical curve on CSAH 52 (east)
- RR track on CSAH 52 (east)
- CSAH 52 has as a lot of bikers. There are locations where the shoulder is not conducive to bikers. So, they are riding out into the lane.
- Traffic
- CSAH 52 may be the most heavily driven in the County. Over 5000. Heavier commuter traffic, too, from drivers coming from Moorhead on Hwy 10.
- East/West traffic coming from the lakes on the weekends.However, during the week CSAH 52 is congested.
- Crash 3-4 years.
- Law Enforcement: Speed is always an issue. When traveling westbound there are two stop signs. Stop for the RR and the intersection, so it gets a little confusing.
- County Installed
- Overhead lighting - 3-4 years ago
- Yield is eastbound.
- (No rumbles exist)
- Recommendations
- Stop bars at two locations (after RR stop sign)
- Do railroads require stop signs or could you either install a yield or stop sign?

Intersection - 2 and 11

- Also interested in LED Stop Signs due to a crash.

Intersection - CSAH 10 and CSAH 31

- Existing Condition
- A lot of traffic. Main lake roads, so commuter traffic.
- Visibility is a concern.
- Extremely rural.
- East -West bound through traffic has the most run the stop signs.
- Many drivers blow through the stop signs.
- Deputies also find this area a concern. More people are running the stop sign going all directions.
- There's law enforcement, but no compliance.
- One summer evening, coming off the interstate past to 280 (3-5 miles), counted 120 cars (43 were from North Dakota).
- 4 miles away the intersection is also skewed with a stop sign.
- When trees are leafed out then the visibility is less poor.
- Law enforcement is working on driving an unmarked vehicle up CSAH 10 to help.
- Motorcycle traffic is also heavy on this road.
- Common excuses are that they didn't see anyone coming. Last crash was alcohol related.
- Shortly after two deaths, the intersection was a four-way stop.
- Concerns with larger haulers or school buses who are trying to turn on the roads (eastwest) and can't accelerate as fast.
- County installed
- Overhead lighting (2).
- LED stop signs. Put up a 4 way stop sign.
- Recommendations
- Consider making it look more like an intersection.
- Major/Minor should have a similar volume for it to be an all-way stop.
- Advanced stop ahead pavement markings.
- Stop bars have more of a positive effect than transverse rumbles. Stop bars on all four may help.
- Consider an embedded stop bar.

Wrap Up: Closing Comments + Workshop Evaluation

- Blowing and drifting snow on rural areas - MnDOT looking at snow fence locations on County road that also experience this. CR 26 (North of Hawley).
- Note that HSIP is not funding snow fencing
- One of the main reasons why the County wanted to hold this project was to figure out what else is out there/understand what else can we do.

Appendix D List of Prioritized Locations

This page intentionally left blank

Rural Segment Prioritization for Clay County															
List No	Project Page No.	CRSP 210	Route System	Route No.	Segment Start Description	Segment End Descripition	Length [miles]	ADt [vod)	Speed Limit	ADT Single-venicle	ADT Multi-vehicle	Access Density	Curve Density	Edge Risk	Total Stars
1	1	1.001	CSSA	1	. 15 Miles South of fletersection of CSAH1/54th Ave NW and 4th St NW	Intersection of 9oth Ave NW and Broadway 5 t NW	3.28	1303	*	*	*	*	*	*	******
${ }^{14}$	2	${ }^{11.004}$	CSAA	11	Intersection of S SAHH11/U 10 and 7 7 Ot S ST	3103 t North of intersection of 4 S 10 and 7 7 th 5 st	0.60	1800	\star	\star	*	\star	\star		*****
${ }^{23}$	3	${ }^{14.001}$	$\mathrm{csaH}^{\text {csit }}$	14		Intersection of 100 ¢ 5 St s and 28th dve S	3.00	${ }^{1375}$	*	*	*	*	*		$\star \star \star \star \star$
${ }^{66}$	4	${ }^{6.001}$	CSAH	6	Intersection of S SSAHG/MN 3 2 and 120th Ave 5		${ }^{2.98}$		*		*			*	
2	5	10.001	${ }_{\text {csat }}$	10		35 Miles West of fltersection of M M 9 and CSAH 10	6.97	1880	*	*					
4	6	10.003	CSAH	10	13366 t East of fltersection of CSAHH1/MM 9 and CSAH 10	Intersection of CSAH 10 and 110 Ave	14.84	2100	*			*	*		
8	7	100.005	CR	100	528 ft North of Intersection of CR100/Howard St and CR 100	Intersection of CR 100 and CR 102	5.26	60	*			\star	*	*	$\star \star \star$
13	8	11.003	CSAA	11	Intersection of CSAH11/1st Ave Eand X King Trail d N	593 At S outh of Intersection of 7 Oth 5 St 5 and 1.94	4.36	1055	*	*		*		*	****
15	9	11.005	csah	11	31033 t North of Intersection of CSAH11/US 10 and 7oth 5 S	Intersection of 28 th Ave a and 70th 5 t N	1.42	1800	*	*	*	*			****
16	10	${ }^{111.006}$	csat	11		Intersection of 7 Oth 5 S N and 90th Ave N	5.06	${ }_{1200}^{1200}$	*	*		*	*		$\star * * * *$
19	11	${ }^{12.001}$	CSAH	12	. 08 Miles West of intersection of S SAAH12/7.th St S W and CSAH 74	Intersection of f U 75 and 6 Oth Ave 5	${ }^{1.36}$	${ }^{6500}$	*		\star	*	*		$\stackrel{\text { ata* }}{* * * *}$
20	12	${ }^{12.002}$	CSAH	12	Intersection of SSAH12/U5 75 and 6 Oth Ave S	19 Miles West of foth St s and 60th Ave s	6.30	1360	*	*		*			$\star * * * *$
28	13	${ }^{19.002}$	CSSAH	19	283 t North of intersection of CSAH1917/t St St E and Parke Ave S	Intersection of Parke Ave sand 4th St SE	0.72	1800		*	\star	*		*	$\star \star \star \star *$
37	14	23.001	CSAH	${ }^{23}$	Intersection of CSAAL23/40th Ave S and 190th 5 st	Intersection of US 10 and 190th 5 ts	2.98	1350	*	\star	\star	\star			$\star \star \star \star \star$
39	15	26.002	csah	26	Intersection of SSAH26/120th St a and 90th Ave N	Intersection of 12477 t West of PN 32	13.27	1950	*	*	*	\star			$\star \star \star \star \star$
52	16	35.001	CSAH	35	Intersection of SSAH35/180th Ave 5 and 275th sts	Intersection of MN 34 and 270th 5 ts	2.37	265	*			\star	*	*	$\star * \star \star$
${ }^{73}$	17	96.001	CR	96	Intersection of CR96/MN 22 2ad CSAH 96	Intersection of US 75 and CSAH5	3.97	457	*			*	*	*	$\star * * *$
9	18	108.02	CR	108	Intersection of CR108/MN9 9nd CR 108	1.04 Miles East of intersection of 150th St and 190th Ave N	2.06	290	*			*		*	***
10	19	108.03	CR	108	1.04 Miles East of intersection of CR108/150th 5tN and 140th Ave N	Intersection of 170¢t 5 S Nand 1 190th Ave N	0.88	290	\star			\star		*	
26 30	20 21 21	18.002 19.004 1	CSSAH	18 19		Intersection of MN 9 and 28 Sth Ave N	11.31 1.89	${ }_{455}^{1125}$	*	*		*			*ᄎ
31	${ }_{22}^{22}$	${ }_{19}^{19.006}$	CSSAH	19	1000 t North of 8 Oth Ave Nand CSAH 19	IIntersection of 9 Oth Ave N and S SAAH 19	1.89 0.80	50	*				*	*	$\star \star$
32	${ }_{2}^{23}$	2.001	CSSAH		85 Miles West of Intersection of S SAAL//160\%h Ave SW and 3 3 d Sts	12088 t East of iftersection of U 75 and C SAH 2	2.07	835	*	*		*			***
34	${ }^{24}$	2.003	CSSAH	2		Intersection of MN 9 and 1160th Ave S	15.37	${ }^{765}$	*	*		*			$\stackrel{\text { a }}{\star \star \star}$
35	25	${ }^{20.002}$	CSSAH	${ }_{20}^{20}$.16 Miles West of intersection of S SAAL2/9/9th St N and 7 Oth Ave N	Intersection of 4575 and 7 Oth Ave N	1.16 1.304	300 2655	$\stackrel{ }{\star}$			*		\star	$\stackrel{\text { a }}{\star \star \star}$
38	${ }^{26}$	${ }^{26.001}$	CSSAH	${ }_{26} 26$			${ }^{13.04}$	${ }_{263}^{2675}$	$\stackrel{\text { * }}{ }$		*	*			***
${ }^{41}$	${ }^{27}$	26.004	CSAH	${ }^{26}$	Intersection of CSAH26/MN 32 and front St	. 50 Miles West of intersectio of 110 Ave and 9 Oth Ave N	${ }_{4}^{4.021}$	${ }_{6}^{663}$	$\stackrel{\text { * }}{ }$	*		*			
42 45	28 29	31.001 33.02	${ }_{\text {csah }}^{\text {csah }}$	31 33			${ }_{\substack{17.21 \\ 6.45}}$	565 1025	*	*		*		*	$\underset{\text { a }}{\star \star \star}$
${ }_{46}^{45}$	29 30	${ }_{33,003}^{33.002}$	Csaht	${ }_{33}$		Intersection of flicave Nand 230th 5 t N	6.4.9 7.00	${ }_{455}$	*			*		\star	$\stackrel{\text { x }}{* *}$
49	31	${ }^{34.003}$	CSSAH	34	Intersection of CSAH34/MN 9 and C SAA 34	Intersection of 5 St 5 t W and 160th Ave N	11.10	800	\star	*		\star			$\star \star \star$
${ }_{51}^{51}$	${ }^{32}$	${ }^{34,005}$	CSSAH	34	16955 t east of fltersection of CSAH34/MN 32 and 160th Ave N	Intersection of 160 Ch Ave a and 100 Ave	2.73	770	*	*		*			***
${ }_{5}^{53}$	${ }^{33}$	${ }^{36.001}$	CSSAH	${ }^{36}$	Intersection of CSAH36/1770th Ave NW and State Limits	Intersection of US 75 and 170th Ave NW	1.08	${ }^{135}$	*			*		*	$\star \star \star$
59 62	34 35	52.001 52004	${ }_{\text {csan }}^{\text {cSaH }}$	52		65 t Suut of flter section of fth Ave SE	1.02 123 1	860 100	*	*		*			$\stackrel{\text { a }}{\star \star \star}$
62 63	$\begin{array}{r}35 \\ 36 \\ \hline\end{array}$	52.004 52.05	${ }_{\text {CSSAH }}$	$\begin{array}{r}52 \\ 52 \\ \hline\end{array}$		Intersection of MNP and C CAA 52	12.32 1.49	14200 4200	*		*	\star			$\stackrel{\star \star \star}{* * *}$
71	37	8.001	CSSAH	8	288 ft east of fintersection of CSAH8/1122th Ave S and Sth Sts	Intersection of 7oth St sand 110th Ave S	6.25	218	*					\star	
11	${ }^{38}$	${ }^{11.001}$	CSAA	11	Intersection of CSAH11/CSAH 50 and CSAH 3	704 ft South of intersection of 1 It 5 St and CSAH 11	10.09	430	*			*			**
17	${ }^{39}$	11.007	CSSAH	11	Intersection of CSSAH11/9Oth Ave N and CSAAH 11	Intersection of 7oth 5 S N and 100th Ave	12.04	648	*	*					**
18	${ }^{40}$	${ }^{114.001}$	CR	114	4311t West of fltersection of CR114/28th dve N and 225th St N	Intersection of 230th 5 t N and 288t Ave N	0.71	175	*					*	**
${ }_{22} 21$	${ }_{41}^{41}$	${ }^{12.004}$	${ }_{\text {CSSAH }}$	${ }_{13}^{12}$		Intersection of M Q 9 and 5 Oth Aves	3.98 1.91	325 320	*			*			
22 24 24	${ }_{4}^{42}$	13.001 17.001	CSSAH	13 17	Intersection of CSAH13/CSAH 5 2 and 50th Aves	Intersection of 7oth 5 S sand 50th Aves	1.91 8.00	340 293	*			*			$\stackrel{\star}{\star \star}$
25	44	18.001	CSSAH	18	Intersection of SSAH18/MN 3 and CSAH 18	463 ft Eastof of intersection of S 575 and CSAH 18	${ }_{0} .85$	890	*	*					**
29	45	19.003	CSSAH	19	Intersection of CSAH11/Parke Ave Sand 4th 5 S SE	Intersection of Parke Ave Nand 1 1 St ST NE	0.43	1142		*				*	**
33	46	2.002	CSSAH	2	1208 tt East of Intersection of CSAH2/US 75 and CSAH2	29 Miles West of intersection of 160th Ave S and 28 St 5 ts	0.49	820	*	*					**
36	47	21.002	CSAAH	${ }^{21}$	Intersection of CSAH21/160th Ave S and 130 th ts	Intersection of 900th Ave S and 130th Ave S	6.60	${ }^{220}$	*			*			
43 44 4	48 49	31.002 33.001	${ }_{\text {csat }}^{\text {csat }}$	$\begin{array}{r}31 \\ 33 \\ \hline\end{array}$			0.32 0.90	1350 1450 1		*	*				**
47	50	${ }_{34,001}^{30001}$	CSSAH	34			${ }_{10.90}^{0.30}$	${ }_{452}$	*			*			$\stackrel{\text { * }}{\star}$
57	51	44.002	CSSAH	44	Intersection of CSAA44/164th 5 St Sand CSAH 44		0.75	230				*		*	
60	52	52.002	Csah	52	654 f South of tieresection of SSAH52/gt Ave SE and front	Intersection of SSAH 52 and 5 th Ave SE	0.31	1900		*	*				
65	${ }_{54}^{53}$	${ }^{52.007}$	${ }_{\text {csar }}$	52		738 t North of 3 34t Ave Sand CSAH 52	4.83	4200	*		*				
70	54 54 5	${ }^{27.002}$	${ }_{\text {c }}^{\text {CS }}$				${ }^{0.32}$	45				*			**
3 5	55 56	10.002 100002	${ }_{\text {CSAAH }}$	10 100	35 Miles West of theresertion of CSAHA10/MN9 and CSAA 10	1386 f E Easat of titersection of MN9 and CSAH 10	0.62 0.10	3300 182			*				\star
7	57	100.004	${ }_{\text {cr }}$	100	Intersection of CR100/Main St and Probstifield		0.17	105						*	
12	${ }_{58}^{58}$	${ }^{11.002}$	${ }_{\text {csah }}$	11	704t Sout of intersection of SSAH11//stst st and CSAH 11		${ }^{0.59}$	985 850 8		$\stackrel{ }{\star}$					
27 40	$\begin{array}{r}59 \\ 60 \\ \hline\end{array}$	${ }_{226.001}^{19.003}$	${ }_{\text {csat }}^{\text {csah }}$	19 26	Intersection of CSAA11/100th St S and Parke Ave S		0.41 0.24	850 1000		*					*
${ }^{48}$	${ }^{61}$	34.002	CSSAH	34	3183 t West of intersection of S SAH34/MN 9 and 7 7t St	Intersection of MN 9 and 7th St	0.61	785		*					*
50 54	${ }_{6}^{62}$	34.004 4	${ }_{\text {csah }}^{\text {csat }}$	${ }_{34}^{34}$		332t East of itersection of tat St SE End CSAH 34	0.61	${ }^{933}$		*					*
54 56	63 64	43.001 44.001	${ }_{\text {csat }}^{\text {csat }}$	43 44	Intersection of SSAA433/MN 9 and front St		0.08 0.30	730 230	*	*					*
${ }_{58}^{58}$	65	45.001	CSSAH	45	Intersection of CSAA45/ US 10 and Main 5 N	Intersection of US 10 and 7 Th St NE	${ }_{0.68}$	632		\star					*
61	66	52.003	CSAA	52	Intersection of CSAH52//st Ave SE and CSAH 52	Intersection of MN 9 and Main Ave E	0.29	3330			*				*
${ }_{64}^{64}$	${ }_{68}^{67}$	${ }_{5}^{52.006}$	${ }_{\text {csah }}$	52		402 It North of thtersection of fth 5 S N and CSAH 52	0.39 0.55	${ }_{4} 220$			*				*
67 68	68 69 69	\%67.002	${ }_{\text {cr }}^{\text {CR }}$	67 71	90.		0.56 0.30	120 420						*	$\stackrel{\text { * }}{ }$ *
69	70	75.002	CR	75	Intersection of C C75/700th St s and CSAH 75	3275 t East of fitersection of CSAH 11 and 50 oth ave S	0.60	440						*	*
72	71 71	88.001 100.003	${ }_{\text {cra }}^{\text {cR }}$	86 100	Intersection of C C886/Us 10 and CSAH 86		1.06 0.07	400 105	*						*
55	73	43.002	CSAH	43	Intersection of CSAA433/-ront 5 St and 5 Sth Ave SE	Intersection of Main Ave E and 2nd St St	0.48	390							
			Count	Percent		Total length	${ }_{\text {count of Stars- }}^{27.92}$		50	36	22	42	10	24	

List No	Project Page No.	CRSP 210	Route System	Route No.	Segment Start Description	Segment End Description	Length [miles]	ADT [vad]	Speed Limit	ADT Single-venicle	ADT Muti-venicle	Access Density	Curve Density	Edge Risk	Total Stars
			3	+1\%			Percent of Stars--		68\%	49\%	30\%	58\%	14\%	33\%	
$\stackrel{\text { a }}{\substack{\star \star \star \star \\ \star \star \star}}$			13 20	18\%											
$\stackrel{\star}{\star \star \star}$			20 17	27\%\%											
*			17	23\%											
			$\stackrel{2}{73}$	$\frac{3 \%}{100 \%}$											

This page intentionally left blank

Rural Intersection Prioritization for Clay County																	
List No.	Project Page No.	CRSP 210	Route System	Route No.	Major Approach	Minor Approach	Context Zone	Total Entering ADT or Cross Product	$\begin{gathered} \text { Leg } \\ \text { Configuration } \end{gathered}$	Alignment Skew [degrees]	Adjacent RR Crossing	Adjacent Curve	Adjacent Commercial Development	Previous 5 stop $(>5 \mathrm{Mi})$	Major Approach Speed Limit	Major Approach Turn Lane Configuration	Total Stars
127	1	5.001	CSAH	5	US 75	CSAH 5 (100th Ave N)		\star	\star	\star	\star	\star			\star		$\star \star \star \star \star \star$
10	2	10.008	CSAH	10	MN9	CSAH 10 (90th Ave S)	\star	\star	*	*				\star	*		$\star \star \star \star \star \star$
75	3	2.002	CSAH	2	US 75 (14th St S)	CSAH 2 (160th Ave S)	*	*	*					\star	*		$\star \star \star \star \star$
3	4	10.001	CSAH	10	CSAH 52	CSAH 10 (90th Ave S)		*	*	\star	\star			\star			*****
17	5	10.015	CSAH	10	MN 32	CSAH 10 (90th Ave S)		\star	*	*				\star	\star		$\star \star \star \star \star$
89	6	23.001	CSAH	23	US 10	CSAH 23 (190th St s)		\star	\star					\star	\star	\star	$\star \star \star \star \star$
92	7	26.003	CSAH	26	US 75	CSAH 26 (90th Ave N)		*	\star		\star			\star	\star		$\star \star \star \star *$
101	8	26.012	CSAH	26	MN 32	CSAH 26 (Front St)	\star	*	*		*			*			$\star \star \star \star \star$
110	9	31.004	CSAH	31	US 10	CSAH 31 (230th St)	\star	*	\star					\star		\star	$\star \star \star \star \star$
115	10	34.001	CSAH	34	US 75	CSAH 34	*	*	*					\star	\star		$\star \star \star \star \star$
117	11	34.003	CSAH	34	MN9 (Hwy 9 N)	CSAH 34 (7th St)	\star	\star	\star					\star	*		$\star \star \star \star \star$
82	12	2.009	CSAH	2	MN9 (Front St N)	MN 34 (160th Ave S)	\star	\star	\star					\star			$\star \star \star \star$
24	13	11.006	CSAH	11	CSAH 11 (Main St)	CSAAH 52 (Holloway St)	*	\star	\star					\star			$\star \star \star \star$
46	14	12.003	CSAH	12	CSAH 12 (60th Ave S)	CSAH 52		\star	\star	\star	\star						$\star \star \star \star$
55	15	14.001	CSAH	14	MN 336 (70th St s)	CSAH 14 (28th Ave S)		\star	\star			\star				\star	$\star \star \star \star$
61	16	17.005	CSAH	17	US 10	CSAH 17 (100th St 5)	\star	\star	\star							*	$\star \star \star \star$
62	17	18.001	CSAH	18	US 75	CSAH 18 (28th Ave)		\star	\star		\star				\star		$\star \star \star \star$
68	18	18.007	CSAH	18	MN 9 (140th ST N)	CSAH 18 (28th Ave N)		*	*					\star	*		$\star \star \star \star$
70	19	19.002	CSAH	19	US 10 (state St)	CSAH 19 (Parke Ave S)	\star	\star	\star							\star	$\star \star \star \star$
86	20	21.003	CSAH	20	CSAH 21 (1300th St S)	CSAH 52			\star	\star	\star			\star			$\star \star \star \star$
88	21	22.001	CSAH	22	US 75	CSAH 22 (Wall Street Ave N)		\star			*				\star	\star	$\star \star \star \star$
96	22	26.007	CSAH	26	MN 9 (140 th ST N)	CSAH 26 (90th Ave N)		*	\star					\star	*		$\star \star \star \star$
124	23	43.001	CSAH	43	CSAH 52	CSAH 43 (Main Ave E)	\star	\star	\star					*			$\star \star \star \star$
129	24	52.001	CSAH	52	MN9	CSAH 52 (175th ST S)	\star	\star		\star				\star			$\star \star \star \star$
135	25	52.007	CSAH	52	CSAH 52	CR 63 (80th St S)		\star	\star	\star	\star						$\star \star \star \star$
136	26	52.008	CSAH	52	CSAH 52 (Holloway ST)	CR 67 (1st St S)	\star	\star		\star	\star						$\star \star \star \star$
137	27	52.009	CSAH	52	CSAH 52	CR 69 (70th Ave S)		\star	\star	\star	\star						$\star \star \star \star$
139	28	52.011	CSAH	52	CSAH 52	CR 78 (50th St S)		*	*	*	\star						$\star \star \star \star$
106	29	3.008	CSAH	3	CSAH 22 (Wall Street Ave N)	CSAH 3 (Oakport St N)		\star	\star	\star							$\star \star \star$
140	30	6.001	CSAH	6	MN 32 (270th Sts)	CSAH 6 (120th Ave S)			*					\star	\star		$\star \star \star$
12	31	10.010	CSAH	10	CSAH 10	CSAH 25 (200th St S)		\star	*					\star			$\star \star \star$
13	32	10.011	CSAH	10	CSAH 10 (90th Ave S)	CSAH 31 (230th St S)		*	*					*			***
18	33	10.016	CSAH	10	CSAH 10 (90th Ave S)	CSAH 37 (2800t St s)		*	*					\star			***
44	34	12.001	CSAH	12	US 75 (8th Rabt S)	CSAH 12 (60th Ave S)		\star	\star						\star		$\star \star \star$
51	35	12.009	CSAH	12	MN 9 (140th St S)	CSAH 12			\star					\star	*		$\star \star \star$
72	36	19.007	CSAH	19	CSAH 26 (90th Ave N)	CSAH 19 (120th St N)		\star	*					*			***
107	37	31.001	CSAH	31	MN 34	CSAH 31 (230th St 5)		\star	\star					\star			$\star \star \star$
119	38	34.005	CSAH	34	CSAH 34 (Northern Pacific Ave)	M8(12tstE)	\star		\star		\star						$\star \star \star$
121	39	35.001	CSAH	35	MN 34 (160th Ave S)	MN 32 (270th St S)		\star	\star					\star			$\star \star \star$
123	40	36.002	CSAH	36	US 75	CSAH 36 (1700th Ave NW)		\star	\star						\star		$\star \star \star$
126	41	44.001	CSAH	44	US 10	CSAH 44		\star							\star	\star	$\star \star \star$
130	42	52.002	CSAH	52	CSAH 52	CR 55 (150th Ave S)			\star	\star	\star						$\star \star \star$
131	43	52.003	CSAH	52	CSAH 52	CR 56 (160th St S)			*	*	*						$\star \star \star$
132	44	52.004	CSAH	52	CSAH 52	CR 62 (120th Ave S)			*	*	*						***
133	45	52.005	CSAH	52	CSAH 52	CR 69 (110th St S)			*	*	\star						***
134	46	52.006	CSAH	52	CSAH 52	CR 68 (90th St S)			\star	*	*						$\star \star \star$
31	47	11.013	CSAH	11	CSAH 11 (70th St N)	CSAH 18 (28th Ave N)		\star	\star					\star			$\star \star \star$
37	48	11.019	CSAH	11	CSAH 11 (70th St N)	CSAH 26 (90th Ave N)		\star	\star					\star			$\star \star \star$
84	49	20.002	CSAH	20	US 75	CSAH 20 (70th AVE N)		\star	\star						\star		$\star \star \star$
152	50	108.002	CR	108	MN9 (140th ST N)	CR 108 (140th Ave N)		\star	\star						\star		$\star \star \star$
77	51	2.004	CSAH	2	CSAH 2 (160th Ave S)	CSAH 11 (70th St s)			\star					\star			$\star \star$
128	52	5.006	CSAH	5	CSAH 5 (30th St N)	CSAH 34 (160th Ave N)			\star					\star			$\star \star$
143	53	7.007	CSAH	7	CSAH 7 (40th ST S)	CSAH 12 (60th Ave S)		\star	\star								$\star \star$
145	54	8.002	CSAH	8	US 75 (14th St S)	CSAH 8 (110th AVE S)			\star						\star		$\star \star$
5	55	10.003	CSAA	10	CSAH 10 (90th Ave S)	CSAH 17 (100th St 5)			\star					\star			$\star \star$
${ }_{11}$	56 57	10.007 10.009	CSSAH	10	CSAH 10 (90th Ave S)	${ }_{\text {CR }}^{\text {I-94 (Ramp) }}$ (70th Ave S)		\star	*								$\star \star$
14	58	10.012	CSAA	10	CSAA 10 (90th Ave S)	CR 120 (240th St S)		\star	*								$\star \star$
15	59	10.013	CSAH	10	CSAH 10 (90th Ave S)	CR 121 (250th St S)		\star	\star								$\star \star$
16	60	10.014	CSAH	10	CSAH 10 (90th Ave S)	CR 124 (260th St S)		\star	\star								$\star \star$
20	61	11.002	CSAH	11	CSAH 11 (70th St S)	CR 51 (170th AVE S)			\star					*			$\star \star$
23	62	11.005	CSAH	11	CSAH 11 (70th St s)	CR 67 (1st Sts)	\star		\star								$\star \star$

Rural Intersection Prioritization for Clay County																	
List No.	$\begin{aligned} & \text { Project } \\ & \text { Page No. } \end{aligned}$	CRSP 2 ID	Route System	Route No.	Major Approach	Minor Approach	Context Zone	$\begin{aligned} & \text { Total Entering } \\ & \text { ADT or Cross } \\ & \text { Product } \end{aligned}$	Leg Configuration	Alignment Skew [degrees]	Adjacent RR Crossing	Adjacent Curve	Adjacent Commercial Development	$\begin{aligned} & \text { Previous Stop } \\ & \text { (>5 Mi) } \end{aligned}$	Major Approach Speed Limit	Major Approach Turn Lane Configuration	Total Stars
25	63	11.007	CSAH	11	CSAH 11 (70th St S)	CR 69 (70th Ave S)	\star		\star								$\star \star$
45	64	12.002	CSAH	12	CSAH 12 (60th Ave S)	CR 78 (50th St S)		\star	*								$\star \star$
54	65	13.001	CSAH	13	CSAH 13 (50th Ave S)	CSAH 52		*			\star						$\star \star$
58	66	15.003	CSAH	15	CSAH 52	CSAH 15 (100th St s)			\star		*						**
69	67	19.001	CSAH	19	CSAH 19 (Parke Ave S)	CR 71 (7th St SE)		\star	*								**
73	68	19.010	CSAH	19	CSAH 34 (1600th Ave N)	CSAH 19 (120th St N)			*					\star			$\star \star$
91	69	26.002	CSAH	26	CSAH 26 (90th Ave N)	CR 96 (Oakport St N)		\star	\star								$\star \star$
97	70	26.008	CSAH	26	CSAH 26 (90th Ave N)	CR 113 (190th st N)			\star					\star			$\star \star$
98	71	26.009	CSAH	26	CSAH 26 (90th Ave N)	CSAH 27 (200th St N)			\star					*			**
100	72	26.011	CSAH	26	CSAH 26 (90th Ave)	CSAH 33 (230th St N)			\star					\star			$\star \star$
104	73	27.002	CSAH	27	CSAH 27 (200th St N)	CSAH 34 (160th Ave N)			*					*			$\star \star$
114	74	33.004	CSAH	33	CSAH 34 (160th Ave N)	CSAH 33 (230th St N)			*					*			$\star \star$
120	75	34.006	CSAH	34	CSAH 34 (160th Ave N)	CSAH 37 (280th St N)			*					*			$\star \star$
125	76	43.002	CSAH	43	CSAH 52 (front St S)	CSAH 43 (5th Ave SE)	\star	\star									**
138	77	52.010	CSAH	52	CSAH 52	CR 75 (50th Ave S)		\star		\star							$\star \star$
30	78	11.012	CSAH	12	CSAH 11	US 10 Off-Ramp (North)		\star				\star					**
41	79	11.023	CSAH	11	CSAH 11 (70th St N)	CSAH 34 (60th St N)			\star					\star			$\star \star$
29	80	11.011	CSAH	11	CSAH 11	TH 940 Off-Ramp (South)		\star				\star					$\star \star$
150	81	100.001	CR	100	CSAH 26 (90th Ave N)	CR 100 (15th St NW)		\star						\star			$\star \star$
1	82	1.002	CSAH	1	CSAH 1 (Broadway St NW)	T111 (70th Ave N)			\star								\star
2	83	1.003	CSAH	1	CSAH 26 (90th Ave N)	CSAH 1 (Broadway St NW)		\star									\star
74	84	2.001	CSAH	2	CSAH 2 (160th Ave S)	CR 59 (3rd Sts)			\star								\star
76	85	2.003	CSAH	2	CSAH 2 (160th Ave S)	CSAH7 7 (50th ST S)			*								\star
78	86	2.005	CSAH		CSAH 2 (160th Ave S)	CSAH 15 (100th St s)			*								*
80	87	2.007	CSAH	2	CSAH 2 (160th Ave S)	CSAH 21 (130th St s)			*								*
105	88	3.007	CSAH	3	CSAH 3 (Oakport St N)	MSAS 151 ((43rd Ave N)		\star									\star
142	89	7.004	CSAH	7	CSAH7 (40th ST S)	CSAH 8 (110th AVE S)			\star								\star
141	90	6.002	CSAH	6	CSAH 2 and CSAH 6	CR 128			*								\star
144	91	8.001	CSAH	8	CSAH 8 (110th AVE S)	CR 59 (3rd St S)			\star								\star
146	92	8.003	CSAH	8	CSAH 8 (110th AVE S)	CR 61 (50th St S)			\star								\star
147	93	8.004	CSAH	8	CSAH 11 (70th St S)	CSAH 8 (110th Ave S)			\star								\star
148	94	9.002	CSAH	9	CSAH 9 (40th St N)	CSAH 18 (28th Ave)			\star								*
4	95	10.002	CSAH	10	CSAH 10 (90th Ave S)	CR 68 (90th St S)			\star								\star
6	96	10.004	CSAH	10	CSAH 10 (90th Ave S)	CR 69 (110th St S)			*								*
8	97	10.006	CSAH	10	CSAH 10 (90th Ave S)	1.94 (Ramp)			*								*
21	98	11.003	CSAH	11	CSAH 11 (70th St S)	CR 57 (140th Ave S)			*								*
22	99	11.004	CSAH	11	CSAH 11 (70th St S)	CR 62 (120th Ave S)			*								*
26	100	11.008	CSAH	11	CSAH 11 (70th St S)	CSAH 12 (60th Ave S)			*								*
27	101	11.009	CSAH	11	CSAH 11 (70th St S)	CSAH 13 (50th Ave S)			*								*
28	102	11.010	CSAH	11	CSAH 11 (70th St S)	CR 76 (40th Ave S)			*								*
48	103	12.006	CSAH	12	CSAH 17 (1000t st 5)	CSAH 12 (50th Ave S)			\star								\star
49	104	12.007	CSAH	12	CSAH 12 (50th Ave S)	CR 71 (110th St S)			\star								\star
50	105	12.008	CSAH	12	CSAH 12 (50th ST S)	CR 72 (120th St S)			\star								\star
52	106	12.010	CSAH	12	CSAH 23 (190th St 5)	CSAH 12 (40th Ave S)			\star								\star
53	107	12.011	CSAH	12	CSAH 12 (40th Ave S)	CSAH 31 (230th St S)			*								*
56	108	14.002	CSAH	14	CSAH 14 (28th Ave S)	CR 68 (90th St S)			\star								$\stackrel{\text { * }}{\star}$
57	109	14.003	CSAH	14	CSAH 14 (28th Ave S)	CSAH 17 (100th St 5)			\star								*
153	110	74.001	CR	74	CR 74 (12th Ave S)	CR 78 (50th St S)			\star								\star
59	111	17.001	CSSAH	17	CSAH 17 (100th St 5)	CR 69 (70th Ave S)			*								\star
60	112	17.004	CSAH	17	CSAH 17 (100th st 5)	CSAH 19 (12th St)			*								*
63	113	18.002	CSSAH	18	CSAH 18 (28th Ave N)	CR 900 (50th St N)			*								*
64 65	114	18.003 18.004	CSSAH	18	CSAH 18 (28th Ave N) CSAH 18 (28th Ave)	${ }_{\text {CR } 68} 68(90 t$ St N$)$			*								\star
65 66	115 116	18.004 18.005	CSSAH	18		$\mathrm{CSAH}_{\text {CSAH } 19} 9(110 \mathrm{tath}$ St N N N$)$			*	*							\star
67	117	18.006	CSAH	18	CSAH 18 (28th Ave N)	CR 92 (130th St N)			*								\star
71	118	19.004	CSAH	19	CSAH 19 (110th St N)	CR84 (15th Ave N)			*								*
87	119	21.004	CSAH	20	CSAH 21 (130th St S)	CR 62 (120th Ave S)			*								*
90	120	26.001	CSAH	26	CSAH 26 (90th Ave N)	CR 98 (10th St NW)		\star									*
149	121	9.004	CSAH		CSAH 26 (90th Ave N)	CSAH 9 (40th St N)		\star									*
93	122	26.004	CSAH	26	CSAH 26 (90th Ave)	CR 95 (40th St N)		\star									*
94	123	26.005	CSAH	26	CSAH 26 (90th Ave N)	CR 68 (90th St N)		\star									\star
95	124	26.006	CSAH	26	CSAH 26 (90th Ave N)	CR 92 (130th St N)		\star									\star

Rural Intersection Prioritization for Clay County																	
List No.	Project Page	CRSP 210	Route System	Route No.	Major Approach	Minor Approach	Context Zone	$\begin{aligned} & \text { Total Entering } \\ & \text { ADT or Cross } \\ & \text { Product } \end{aligned}$	Leg Configuration	Alignment Skew [degrees]	Adjacent RR Crossing	Adjacent Curve	Adjacent Commercial Development	$\begin{gathered} \text { Previous Stop } \\ (>5 \mathrm{Mi}) \end{gathered}$	Major Approach Speed Limit	Major Approach Turn Lane Configuration	Total Stars
99	125	26.010	CSAH	26	CSAH 26 (90th Ave N)	CR114 (210th St N)			\star								\star
102	126	26.013	CSAH	26	CSAH 26 (90th Ave N)	CSAH 37 (280th St N)								\star			*
103	127	26.014	CSAH	26	CSAH 26 (90th Ave N)	CSAH 37 (280th St N)								*			\star
108	128	31.002	CSAH	31	CSAH 31 (230th St S)	CR126 (120th Ave S)			\star								*
109	129	31.003	CSAH	31	CSAH 31 (230th St S)	CR 119 (60th Ave S)			\star								\star
113	130	33.003	CSAH	33	CSAH 33	CR 112 (140th Ave N)			\star								\star
116	131	34.002	CSAH	34	CSAH 34 (160th Ave N)	CR 73 (90th St N)			\star								\star
118	132	34.004	CSAH	34	CSAH 34 (160th Ave N)	CR 110 (190th St N)								\star			\star
122	133	36.001	CSAH	36	CSAH 36 (170th Ave NW)	CR 100 (10th ST NW)			\star								\star
32	134	11.014	CSAH	11	CSAH 11 (70th St N)	CR 89 (43rd Ave N)			\star								\star
33	135	11.015	CSAH	11	CSAH 11 (70th St N)	CR 91 (57th Ave N)			\star								*
34	136	11.016	CSAH	11	CSAH 11 (70th St)	CR 93 (70th Ave N)						\star					\star
36	137	11.018	CSAH	11	CSAH 11 (70th St N)	CR 94 (80th Ave N)			\star								*
38	138	11.020	CSAH	11	CSAH 11 (70th St N)	CSAH 28 (110th Ave N)			*								*
39	139	11.021	CSAH	11	CSAH 11 (70th St)	CR 108 (140th Ave N)			\star								*
40	140	11.022	CSAH	11	CSAH 11 (70th St)	CR 107 (150th Ave N)			\star								*
42	141	11.024	CSAH	11	CSAH 11 (70th St N)	CR 106 (170th Ave N)			*								*
83	142	20.001	CSAH	20	CSAH 20 (70th AVE N)	CR 96 (Oakport St N)			\star								\star
151	143	100.003	CR	100	CR 100 (15th St NW)	CR 101 (200th Ave N)			\star								\star
19	144	11.001	CSAH	11	CSAH 11	CR 50						\star					\star
79	145	2.006	CSAH	2	CSAH 2 (160th Ave S)	CR 69 (110th St S)											
81	146	2.008	CSAH	2	CSAH 2 (160th Ave S)	CR 56 (160th St S)											
7	147	10.005	CSAH	10	CSAH 10 (90th Ave S)	CSAH 21 (130th St S)											
47	148	12.005	CSAH	12	CSAH 17 (100th St S)	CSAH 12 (60th Ave S)											
85	149	21.002	CSAH	20	CSAH 21 (130th St S)	CR 55 (150th Ave S)											
111	150	33.001	CSAH	33	CSAH 33 (5th St)	CR 115 (15th Ave N)											
112	151	33.002	CSAH	33	CSAH 33 (230th St N)	CR 114 (28th Ave N)											
35	152	11.017	CSAH	11	CSAH 11 (70th St N)	CR 93 (70th Ave N)											
43	153	11.025	CSAH	11	CSAH 11 (70th St N)	CR 70 (190th Ave N)											
stars																	
			Count	Percent		Count of Stars --	17	63	121	19	20	6	0	${ }^{43}$	20	7	
			0	0\%		Percent of Stars --	11\%	41\%	79\%	12\%	13\%	4\%	0\%	28\%	13\%	5\%	
$\star \star \star \star \star \star \star \star \star$$\star \star \star \star \star \star \star \star$			0	0\%													
			0														
$\begin{aligned} & \star \star \star \star \star \star \star \star \\ & \star \star \star \star \star \star \star \end{aligned}$			${ }_{2}$	0%													
			9	6\%													
			17	11\%													
			22	14\%													
$\mid \star \star$			31 63	20\%													
\star			$\begin{aligned} & 63 \\ & 9 \\ & \hline \end{aligned}$	$\begin{gathered} 41 \% \\ 6 \% \end{gathered}$													
Total			153	100\%													

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

Appendix \in - Regional TZD Coordinator Contact

This page intentionally left blank

Contact MN TZD ${ }^{1}$

For more information about TZD, or for program-related questions:

Linda Dolan
Program Coordinator
Center for Transportation Studies, U of MN
Phone: 612-625-4533
E-mail: Idolan@umn.edu
Kristine Hernandez
Statewide TZD Coordinator
Phone: 507-286-7601
E-mail: kristine.hernandez@state.mn.us
TZD Program Co-chairs
Brian Sorenson, P.E.
State Traffic Engineer, Office of Traffic Eng.
Minnesota Department of Transportation
Phone: 651-234-7004
E-mail: brian.sorenson@state.mn.us
Mike Hanson
Director, Office of Traffic Safety
Minnesota Department of Public Safety
Phone: 651-201-7061
E-mail: michael.hanson@state.mn.us
Mark Kinde
Manager, Injury \& Violence Prevention
Minnesota Department of Health
Phone: 651-201-5447
E-mail: mark.kinde@state.mn.us
TZD Regional Coordinators
East Central MN
Bill Van Koevering
Phone: 320-247-3811
E-mail: william.vankoevering@state.mn.us

[^1]
Northeast MN

Holly Kostrzewski
Phone: 218-725-2828
E-mail: holly.kostrzewski@state.mn.us
Northwest MN
Sue Johnson
Phone: 218-766-5943
E-mail: susan.marie.johnson@state.mn.us
Metro MN (East Metro)
Scot Edgeworth
Phone: 651-775-9496
E-mail: scot.edgeworth@state.mn.us
Metro MN (West Metro)
Tara Helm
Phone: 651-201-7067
E-mail: tara.helm@state.mn.us
Southeast MN
Jessica Schleck
Phone:507-286-7602
E-mail: jessica.schleck@state.mn.us
South Central MN
Annette Larson
Phone: 507-720-2101
E-mail: annette.I.larson@state.mn.us
Southwest MN
Melissa Hjelle
Phone: 320-905-2319
E-mail: melissa.hjelle@state.mn.us
West Central MN
Katy Kressin
Phone: 218-849-0048
E-mail: katy.kressin@state.mn.us

This page intentionally left blank

Appendix F - List of
 Recommended Projects

This page intentionally left blank

Rural Segment Project List for Clay Coun																	
Ist No．	Proiect Page	crsp 210	$\substack{\text { Route } \\ \text { sytem }}$	Route No．	Segment Start Dessripition	Segment End descripition	Lensth	Toatalsars	Buter betwen	Clear 2 隹	Six 1 Cra we Refenective	Ider Paving and	Centerine Rum	Edgeline Rumbe Strip	Shoulder Rumble strip	Ennaneed Efgeline	cost
${ }_{14}^{14}$	${ }_{2}^{1}$	${ }_{\substack{11.001 \\ 11.004}}^{\text {a }}$	${ }_{\text {c }}^{\text {csat }}$	${ }_{11}^{11}$			co．${ }_{\substack{3.8 \\ 0.60}}$		\bigcirc	0	0	！		1	\％		
66	4	${ }_{6} 6.001$	csath	6			${ }_{2}$	＊＊＊＊＊	0	0	0	0	1	1	\bigcirc		
${ }_{4}^{2}$	5	（10．001		10 10 10			${ }_{\substack{6.97 \\ 10.84}}^{\text {1．}}$	$\stackrel{\star}{* * \star \star}$	：	：	：	：	1	1	：		（56，030．69
${ }^{13}$	8		csart	11				$\stackrel{*}{* * * *}$		\bigcirc	\bigcirc	1	1	1	1	！	
${ }_{8}$	7	1000005	${ }^{\text {cr }}$	100		Interesetion of CfR 100 and CPR 102	5.26	$\stackrel{* * * *}{* * * *}$	0				0	0	0		S14，209，55
－ $\begin{array}{r}15 \\ 16 \\ 16\end{array}$	${ }_{10}$	（11．005	${ }_{\text {csah }}^{\text {csat }}$	$\frac{11}{11}$		Interectio of 28\％h Ave Nand 7 Oht St N	（1．06	$\stackrel{\star \star \star \star}{* * * *}$	：	！	\bigcirc	！	$\frac{1}{1}$	1	\bigcirc	$\frac{1}{1}$	
19	11	${ }^{12,001}$	$\mathrm{csah}^{\text {a }}$	12		Intersection of f 75 75and 6 orn Aves	1.36	＊＊＊＊	0	0	0	0	0	0	1	1	5 $5,71.1 .45$
${ }_{28}^{20}$	${ }_{13}^{12}$		${ }_{\text {csat }}^{\text {csat }}$	12 19		19 Miles Westofototh st sand Soth Ave	${ }_{\substack{6.30 \\ 0.72}}$	$\stackrel{\star \star \star \star \star}{* * * *}$	\bigcirc	\bigcirc	！	！					
37		23.001	csah	${ }^{23}$		Intesection of 4 S 10 and 190th 5 ts	2.98	＊＊＊＊	0	0	0	0	1	1	0		${ }_{525,933,66}$
${ }_{3}^{39}$	${ }^{15}$	${ }^{25.002}$	$\mathrm{csan}^{\text {cat }}$	${ }_{26}^{26}$		Intersection of f1247）Westo of M 32	${ }^{13,27}$	＊＊＊＊	0	0	0	0	1	1	0	1	S115，472，69
${ }_{73}^{52}$	${ }_{17}^{16}$			${ }_{96}^{35}$					0	\bigcirc	－						
${ }_{9}^{73}$	${ }_{18}^{17}$	${ }^{96000} 10$	${ }_{c}^{\text {cR }}$	96 108			${ }^{3.97}$	＊＊＊	！	－	－	！	\bigcirc	0	0	1	
10	19	108003	${ }^{\text {cr }}$	108		Intersection of 1700h St Sand 100th Ave N	0.88	＊＊＊	0	0	0	0	0	0	0	1	52，36，84
${ }^{26}$	${ }^{20}$	18．002	${ }_{\text {c Cah }}$	${ }^{18}$			${ }^{113131}$	＊＊＊	0	0	0	0	1				${ }_{\text {S98，436，82 }}$
30 31 31	${ }_{22}^{21}$		${ }_{\text {csaht }}^{\text {csat }}$	19 19			${ }_{\substack{1.89 \\ 0.80}}^{\text {a }}$	$\stackrel{\text { ck }}{\star \star \star \star}$	\bigcirc	\bigcirc	\bigcirc	！	\bigcirc	\bigcirc	！	1	
${ }^{32}$	${ }^{23}$	2.001	csah	2			2.07	＊＊＊	0	0	0	0	0	1	0		\＄11，815，23
34 35	24 25 25	${ }_{2}^{20.002}$	${ }_{\text {cosat }}^{\text {cost }}$	${ }_{20}^{2}$			1.37 1.16 1	$\star * *$	！	！	！	\bigcirc	\bigcirc		\bigcirc		¢88，612．15
${ }_{38}$	${ }_{26}^{25}$	${ }_{2}^{26.0001}$	csah	${ }_{26}$			${ }_{1}^{13.04}$		0	0	0	0	0	0			
${ }^{41}$	${ }^{27}$	22.004	csath	${ }^{26}$		50 Miles West of fleresection of 1110 Ave and 90th Ave N	4.02	＊＊＊	0	0	0	0	0	1		1	522，833，62
${ }_{45}^{42}$	${ }_{29}^{28}$		${ }_{\text {csaf }}^{\text {csat }}$	31 33			${ }_{\substack{17.21 \\ 6.45}}^{\substack{\text { a }}}$	＊＊＊	－	0	0	－	1	1	！	1	
46 49	${ }_{30}^{30}$	${ }_{\substack{33.003 \\ 34003}}$	${ }_{\text {csan }}^{\text {cat }}$	33 34			7.00 7120		0	0	\bigcirc	\bigcirc	0	0	\％		${ }_{\text {s18，099，60 }}$
49 51 5	${ }_{31}^{31}$	${ }_{\substack{34.003 \\ 3405}}$	${ }_{\text {cose }}^{\text {cait }}$	${ }^{34}$			${ }_{1213}^{1120}$				\bigcirc		\bigcirc		－		
${ }_{53}$	${ }_{33}$	${ }_{\text {36，001 }}$	${ }_{\text {csar }}$	${ }_{36}$			${ }_{1.08}^{2.08}$	＊＊＊	。	！	0	0	！	0	－	1	${ }_{\substack{\text { che } \\ 512,912,20}}$
59	${ }^{34}$	${ }_{5}^{52.001}$	csat	52		65 S Suth of thersection of 9th ves SE	1.02		0	0	0	0	0	1	0		
62 63	35 36	（2004	${ }_{\text {csar }}^{\text {cat }}$	${ }_{52}^{52}$			1232 1.32 1		\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1	\bigcirc	1	
${ }_{71}$	${ }_{37}^{36}$		${ }_{\text {cast }}$	${ }_{8}^{52}$		Hester	（1．25	＊＊	1	\bigcirc	\bigcirc		0	0			退
						Total	${ }_{1}^{198.02594}$		1	0	0		15	$\stackrel{21}{21}$	${ }^{3}$	${ }_{35}$	

This page intentionally left blank

Curve Project List for Clay County

Listo.	Project page No.	CRSP 210	Route Sustem	Route No.	Segment Start Descripion	Segment End Descripion	$\begin{gathered} \text { Length } \\ \text { [ilies] } \end{gathered}$	Total Stars	Clear Zone Enhancements	High Friction Surface Surface Treatment Treatme	Reconstruct TT Intersection to T Intersection	Lighting	Curve Waring Sign	Speed Advisors Sign	Chevons or Arow Board	cost
52	1	96.001	${ }^{\text {cr }}$	96	Intersection of Crab/MN 22 and CSAH 96	Intersection of US 75 and CSAH 5	0.10	******	0	0	0	0	Country Completed	0	Countr Completed	No Proiect-Previususy Completed
31 32	${ }_{3}$	${ }_{\substack{31.001 \\ 31002}}$	${ }_{\text {chat }}^{\text {csat }}$	${ }_{31}^{31}$			0.25	$\stackrel{*}{* * * * *}$	0	0	0	0	Country Completed	0	Countr Completed	No Priject-Previusis Completed
32 41	3 4	(enti.002	${ }_{\text {csan }}^{\text {csat }}$	31 35			0.29 0.27	$\underset{*}{* * * * * *}$	0	0	:	!	Countr Completed	\bigcirc	Countr Completed County Completed	
${ }_{48}$	5	100.001	${ }_{\text {cr }}$	100		Intersection of CR 100 and CR 102	0.13	*****	0	0	0	0	conk	1	,	\$4,500.00
	6	${ }^{19.001}$	$\mathrm{cash}^{\text {can }}$	19	Intersection of CSAH19/1/t 5 S NE a and 11th St N	Intersection of 110th St N and 28 th Ave N	0.08	****	0	0	0	0		0	0	No Project - Criteria No Met
42 49 49	7	33.003	${ }_{\text {cas }}^{\text {ciat }}$	35 100			0.25 0.11	$\stackrel{* * * *}{* * * *}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Country Completed	${ }_{1}$	\bigcirc	
	9	96.003	cr	96	Intersection of CRP96/MN 22 and CSAH 96	Intersection of US 75 and CSAA 5		****	0			0		0	0	ct-Criteria Not Met
55	10	96.004	${ }_{\text {ck }}$	96	Intersection of C CRG6M 222 2nd CSAH 96	Intersection of U 575 and CSAH 5	0.11	****	0	0	0	0	0	0	0	No Poroject-Criteria Not Met
2	11	1.002	CSaA	1	of intersection of Wal Ist Ave NW/ / Broadways NW	Intersection of Wall 5 Stave $\mathrm{NW} / \mathrm{Braadwayst} \mathrm{NW}$	0.06	***	0	0	0	0	Countr Completed	0	1	\$2,500.00
25 33 35	${ }^{12}$	${ }^{19,002}$	${ }_{\text {csat }}$	19		Intersection of 9octh dve N and CSAH 19	0.07	$\stackrel{*}{\star \star \star}$	0	0	0	0	0	0	0	No Project- Criteriri Not Net
33 35	13 14		csat	${ }_{31}^{31}$			0.29 0.08	$\stackrel{\star \star \star}{* * *}$	0	\bigcirc	。	:	\bigcirc	\bigcirc	\bigcirc	
35 36	${ }_{15}^{14}$	(12005	$\underset{\text { csat }}{\substack{\text { csat } \\ \text { csit }}}$	${ }_{31}^{31}$			0.08 0.06	$\stackrel{*}{\star \star \star}$	${ }_{1}$:	\bigcirc	!	!	!	!	No Projectict Criteria Not Met
${ }^{40}$	${ }^{16}$	${ }^{35.001}$	${ }_{\text {csan }}$	${ }^{35}$		Intersection of M M 3 4 and 27 Poth 5 St 5	0.08	***		0	0	0	0	0	0	No Project-Criteria Not Met
${ }_{5}^{43}$	${ }_{18} 17$	${ }^{52.001}$	csat	${ }^{52}$		Intersection of M N 9 and CSAH 52	${ }^{0.10}$	***	0	0	0	0	0	0	0	No Project-Criteria Not Met
50	${ }_{18}^{18}$	100.03	${ }_{\text {cR }}$	100	528 H North of fleersection of CR100)/Howard St a and CR 100	Intersection of Cr 100 and cr 102	${ }^{0.18}$		0	0	\bigcirc	0	0	0	0	No Project-Criteria Not Met
51 53	${ }_{20}^{19}$	(100.004	${ }_{\text {cR }}^{\text {cR }}$	100 96			0.12 0.09	***		\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
						interection	$\stackrel{.}{279}$		$\underline{1}$	\bigcirc	$\underline{0}$	$\underline{0}$	$\underline{\underline{2}}$	$\underline{\underline{2}}$	$\underline{\underline{2}}$	

This page intentionally left blank

Rural Intersection Project List for Clay County

List No. 1	Project Page No.	CRSP 210	Route System	Route No.	Major Approach Name	Minor Approach Name	Total Stars	Reconstruct T to Single	Roundabut	JTurn	LED Stop Sign	Thru-Stop to All-Way Stop/Yield	Left Turn Lanes on Major Roads (Thru-Traffic)	Lighting	Review Signs and Markings	Upgrade Signs and Pavement Markings	cost
127	1	5.001	CSAH	5	US 75	CSAH 5 (100th Ave N)	$\star \star \star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
10	2	10.008	CSAH	10	MN9	CSAH 10 (90th Ave S)	$\star \star \star \star \star \star$ *	0	0	0	0	0	0	1	0	0	\$15,000
75	3	2.002	CSAH	2	US 75 (14th Sts)	CSAH 2 (160th Ave S)	$\star \star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
3	4	10.001	CSAH	10	CSAH 52	CSAH 10 (90th Ave S)	$\star \star \star * * *$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
17	5	10.015	CSAH	10	MN32	CSAH 10 (90th Ave S)	$\star \star \star \star \star$	0	0	0	1	0	0	1	0	0	\$17,000
89	6	${ }^{23.001}$	CSAH	${ }^{23}$	US 10	CSAH 23 (190th St S)	$\star \star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
92	7	${ }^{26.003}$	CSAH	26	US 75	CSAH 26 (90th Ave N)	$\star \star \star \star \star$	0	0	0	1	0	0	1	0	0	\$17,000
101	8	26.012	CSAH	26	MN 32	CSAH 26 (front St)	$\star \star \star \star \star$	0	0	0	1	0	0	1	0	0	\$17,000
110	9	31.004	CSAH	31	US 10	CSAH 31 (230th St)	$\star \star \star \star \star$	0	0	1	0	0	0	0	0	0	S1,00,000
115	10	34.001	CSAH	34	US 75	CSAH 34	$\star * * * *$	0	0	0	0	0	0	1	0	0	\$15,000
117	11	34.003	CSAH	34	MN9 (Hwy 9 N)	CSAH 34 (7th St)	$\star \star \star * * *$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
82	12	2.009	CSAH	2	MN9 (Front ts N)	MN 34 (160th Ave S)	$\star \star \star \star$	0	0	0	0	0	0	0	1		No Project-Criteria Not Met
24	13	11.006	CSAH	11	CSAH 11 (Main St)	CSAH 52 (Holloway St)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
46	14	12.003	CSAH	12	CSAH 12 (60th Ave S)	CSAH 52	$\star \star \star \star$	0	0	0	0	0	0	1	,	0	\$15,000
55	15	14.001	CSAH	14	MN 336 (70 th St S)	CSAH 14 (28th Ave S)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
61	16	17.005	CSAH	17	us 10	CSAH 17 (100th St S)	****	0	0	0	0	0	0	-	1	0	No Project-Criteria Not Met
62	17	18.001	CSAH	18	US 75	CSAA 18 (28th Ave N)	****	0	0	0	0	0	0	O	1		No Project-Criteria Not Met
68	18	18.007	CSAH	18	MN9 (1400t ST N)	CSAH 18 (28th Ave N)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
70	19	19.002	CSAH	19	US 10 (state St)	CSAH 19 (Parke Ave S)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
86	20	21.003	CSAH	20	CSAH 21 (1300th Sts)	CSAH 52	****	0	0	0	0	0	0	1	0	0	\$15,000
88	21	22.001	CSAH	22	US 75	CSAH 22 (Wall Street Ave N)	****	0	0	0	0	1	0	0	1	0	\$3,000
96	22	26.007	CSAH	26	MN9 (140th ST N)	$\mathrm{CSAH}_{26} \mathbf{6}$ (90th Ave N)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
124	23	43.01	CSAH	43	CSAH 52	CSAH 43 (Main Ave E)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
129	24	52.001	CSAH	52	MN9	CSAH 52 (175th ST S)	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
135	25	52.007	CSAH	52	CSAH 52	CR 63 (80th Sts)	****	0	0	0	0	0	0		1	0	No Project-Criteria Not Met
136	26	52.008	CSAH	52	CSAH 52 (Holloway ST)	CR 67 (1 st 5 5 S$)$	$\star \star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
137	27	52.009	CSAH	52	CSAH 52	CR 69 (70th Ave S)	$\star \star \star \star$	0	0	0	0	0	0		1	0	No Project-Criteria Not Met
139	28	52.011	CSAH	52	CSAH 52	CR 78 (50th St s)	$\star \star \star \star$	0	0	0	0	0	0		1	0	No Project-Criteria Not Met
106	29	3.008	CSAH	3	CSAH 22 (Wall Street Ave N)	CSAH 3 (Oakport StN)	$\star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
140	30	6.001	CSAH		MN 32 (270th St 5)	CSAH 6 (120th Ave S)	$\star \star \star$	0	0	0	0	0	0	1	0	0	\$15,000
12	31	10.010	CSAH	10	CSAH 10	CSAH 25 (200th St S)	$\star \star \star$	0	0	0	0	0	0		1		No Project-Criteria Not Met
13	32	10.011	CSAH	10	CSAH 10 (90th Ave S)	CSAH 31 (230th St S)	$\star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
18	33	10.016	CSAH	10	CSAH 10 (90th Ave S)	CSAH 37 (2800th St s)	$\star \star \star$		0	0	0	0	0	0	1	0	No Project-Criteria Not Met
44	34	12.001	CSAH	12	US 75 (8th Rabt s)	CSAH 12 (60th Ave S)	$\star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
51	35	12.009	CSAH	12	MN9 (140th St 5)	CSAH 12	$\star \star \star$	0		0	0	0	0	1		0	\$15,000
72	36	19.007	CSAH	19	CSAH 26 (90th Ave N)	CSAH 19 (120th St N)	$\star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
107	37	31.001	${ }_{\text {CSAH }}$	${ }^{31}$	MN 34	CsaH 31 (230th St s)	$\star \star \star$	0	0	0	0	0	0	1	1	0	\$15,000
119	38	34.005	CSAH	34	CSAH 34 (Northern Pacific Ave)	M8 (15tste)	$\star \star \star$	0	0	0	0	0	0	0	1		No Project-Criteria Not Met
121 123	39	35.001	${ }_{\text {CSSAH }}$	35	MN 34 (160th Ave S)	MN 32 [270th St 5)	$\star \star \star$	0	0	0	0	0	0	1	0	0	\$15,000
123 126	${ }_{41}^{40}$	36.02 44.001	${ }_{\text {CSSAH }}^{\text {CSAH }}$	36 44	${ }_{\text {US }}^{\text {Us }}$	CSAH 36 (170th Ave NW)	$\underset{\star \star \star}{\star \star \star}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	0	\bigcirc	0	0	0	1	0	No Project-Criteria Not Met
130	42	52.002	CSAH	52	CSAH 52	CR 55 (150th Ave S)	***	0	0	0	0	0	0	0	1	0	No Project - Criteria Not Met
131	43	52.003	CSAH	52	CSAH 52	CR 56 (1600th Sts)	$\star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
132	44	52.004	CSAH	52	CSAH 52	CR 62 (120th Ave S)	$\star \star \star$	0	0	0	0	0	0	0	1	0	No Project-Criteria Not Met
133	45	52.005	CSAH	52	CSAH 52	CR 69 (110th St S)	$\star \star \star$	0	0	0	0	0	0	O	1		No Project-Criteria Not Met
134	46	52.006	CSAH	52	CSAH 52	CR 68 (90th St)	$\star \star \star$	0	0	0	0	0		0	1	0	No Project-Criteria Not Met
31 37	47	11.013	${ }_{\text {CSSAH }}$	11	CSAH 11 (70 th St N)	CSSAH 18 (288th Ave N)	$\star \star \star$	0	\bigcirc	0	1	0	\bigcirc	1	1	\bigcirc	${ }_{\text {S }}^{\text {S17,000 }}$
84	${ }_{48}^{48}$	${ }_{20}^{11.019}$	${ }_{\text {CSAAH }}$	${ }_{20}^{11}$	CSAA 11 USTOth St)		$\stackrel{\text { a }}{\star \star \star}$	0	0	0	0	0	0	0	1	0	No Project - Criteria Not Met
152	50	108.002	CR	108	MN9 (140th STN)	CR 108 (140th Ave N)	$\star \star \star$	0	0	0		0	0	0	1	-	No Project - Criteria Not Met
								$\underline{0}$	$\underline{0}$	$\underline{1}$	4	$\underline{1}$	$\underline{0}$	$\underline{12}$	37	$\underline{0}$	$\underline{\$ 1,191,000}$

This page intentionally left blank

Urban Segment Project List for Clay County														
t No.	$\begin{aligned} & \text { Project } \\ & \text { Page No. } 2 \end{aligned}$	CRSP 210	Route System	Route No.	Segment Start Description	Segment End Description	Length [miles]	Total Stars	Divided Roadway	Access Management	Rood D	Vehicle Speed Feedback Signs	Sidewalk	cost
${ }_{1}$	$\frac{1}{2}$	${ }_{3}^{3.001}$	${ }_{\text {CSSAH }}^{\text {CSAH }}$	${ }_{3}$	Intersetion of CSAH3/U 10 and 1 It 5 ST	Intersection of 11trs 5 N a and 2nd Ave N	${ }^{0.14} 4.30$	$\stackrel{\star \star \star \star}{\star \star \star}$	0	1	0	0	0	$\xrightarrow{\text { No Project- Critiera Not Met }}$
							4.44		0	1	0	0	0	$\frac{51,5949,9.31}{51,59,9931}$

This page intentionally left blank

Urban Intersection Project List for Clay County - Vehicle Related																
List No.	$\begin{aligned} & \text { Project } \\ & \text { Page No. } \end{aligned}$	CRSP 210	Route System	Route No.	Major Approach Name	Minor Approach Name	Total Stars	Lighting	Roundabout	JTurn	Signalized J Turn	Thru-Stop to AllWay Stop/Yield	Upgrade Signs and Pavement Markings	Confirmation Lights	Upgrade Signal Hardware	cost
3	1	3.002	CSAH	3	MSAS 115 (1st Ave N)	CSAH 3 (11th St N)	$\star \star \star \star \star \star \star \star$	0	0	0	0	0	0	1	0	\$1,500
2	2	3.001	CSAH	3	US 10	CSAH 3	$\star \star \star \star \star \star$	0	0	0	0	0	0	0	0	No Project - Criteria Not Met
10	4	52.013	CSAH	52	MSAS 128 (30th Ave S)	CSAH 52	$\star \star \star \star \star *$	0	0	0	0	0	0	0	0	No Project-Criteria Not Met
14	3	9.001	CSAH	9	US 10	CSAH9	$\star \star \star \star \star \star$	0	0	0	0	0	,	0	0	\$3,500
7	5	45.001	CSAA	45	US 10 (Center Ave W)	CSAH 45 (Main St S)	$\star \star \star \star \star$	0	0	0	0	0	0	0	0	No Project - Criteria Not Met
1	6	1.001	CSAH	1	CSAH 1 (Broadway St NW)	CSAH 22 (Wall Street Ave N)	$\star \star \star$	0	0	0	0	0	1	0	0	\$3,500
9	7	52.012	CSAH	52	CSAH 52	MSAS 138 (40th Ave S)	$\star \star \star$	1	0		0	0	1	0	0	\$18,500
15	8	75.001	CR	75	US 75 (8th St 5)	MSAS 146 ((50th Ave S)	$\stackrel{\star}{\text { Tota }{ }_{\text {a }} \text { Proects }}$	0	0	0	0	0	4	0	0	\$3,500

This page intentionally left blank

List No.	${ }_{\text {Project }}^{\text {Page }}$ (asp 2	Route Syste	Rou	Major	min	Total Stars	$\begin{gathered} \text { Mini } \\ \text { Roundabout } \end{gathered}$	Median Refuge Island	RrfB	RRFB with Refuge Island	Pedestrian Hybrid Beacon	No Right Turn on bign (static or	curb Exensions	$\begin{aligned} & \text { Leading } \\ & \text { Pedestrian } \end{aligned}$	Pedestrian Timer	Upgrade Signal Hardware and Review and Revise Signal Timing and	cost
2	1	${ }_{3}^{3.001}$	${ }_{\text {csat }}^{\text {csat }}$	${ }_{3}$	$\frac{\text { Us } 10}{}$	${ }_{\text {csah }}$	$\stackrel{*}{\star * * * *}$	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	1	1	$\stackrel{0}{0}$	\cdots	
${ }_{7}^{3}$	$\stackrel{3}{2}$	${ }^{3.002} 4$	${ }_{\text {csat }}^{\text {CSAH }}$	${ }_{4}^{35}$	MSAS 115 (12stave N)		$\stackrel{\star \star \star \star \star}{\star * * *}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	!	${ }_{1}$	1	1	1	${ }_{\substack{\text { S6,000 } \\ 588,00}}$
10	5	${ }_{52.013}$	Csart	52	MSAS 128 (30at A Aves)	CSAA 52	**	0	0	0	0	0	0	${ }_{0}$	1	\bigcirc	1	S6,000
14	4	9.001	csah	9	us 10	CSAH9	$\stackrel{\text { **** }}{\star \star}$	0	0	0	0	0	0	0	0	0	0	No Project-Citieria Not Met
${ }_{8}^{5}$	$\begin{array}{r}8 \\ 6 \\ \hline\end{array}$	3.005	${ }_{\text {csat }}^{\text {csat }}$	35 4			$\stackrel{\star \star}{* *}$!	1	\bigcirc	\bigcirc	!	!	1	!	\bigcirc	\bigcirc	¢ 53550000
${ }_{12}$	7	4.009 7.009	${ }_{\text {csar }}$	7	csah7 7 (0ath s s s)	MSSAS 138 (40th Ave S)	**	0	1	0	0	0	0	1	0	0	0	$\xrightarrow[\substack{\text { S535,000 } \\ \text { S5, }}]{\text { Steo }}$
							tal Proects	0	3	\bigcirc	0	0	0	5	4	1	4	S161,000

This page intentionally left blank

Appendix G - Recommended Project Maps

This page intentionally left blank

Clay County - Curve Projects

Created on 3/21/2023

Clay County - Intersection Projects
Created on 3/23/2023

This page intentionally left blank

Appendix H HSIP Submission Forms

This page intentionally left blank

Rural Segment Project on CSAH 1

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	1	Severe Lane Departure
Density (per mile per yr):	0.12	0	0.06	0
Rate (per MVM):	0.26	0	0.13	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	1	\$9,846.08
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	1	\$9,846.08
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$8,861.47
Systemic Project	\checkmark				timated Proder	\$28,553.63

Rural Segment Project on CSAH 2

Roadway Information

Crash Information		Severe Crash Count	Total L-year Crash History (2016-2020)	Total
	0	0	0	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0		0	

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	835	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	835	$x x \geq 1,250$		-
Curve Density (cur per mile):	0	$x x \geq 0.6$		
Access Density (access per mile):	9.17	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2 S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

List of Strategies Considered					
Buffer Between Opposing Lanes:	Type	Proactive	$\$ 150,000$	Unit	Quantity

[^2]\square

Rural Segment Project on CSAH 2

Roadway Information

Shoulder Width (ft): 0
Click to View in Google Maps
Crash Information

Systemic Safety Risk Factors

	Value	Threshold		Star Assignment
Speed Limit (mph):	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	765	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	765	$x x \geq 1,250$		-
Curve Density (cur per mile):	0	$x x \geq 0.6$		-
Access Density (access per mile):	7.74	$7 \leq x x \leq 18$		*
Outside Edge Risk:	1	2S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

List of Strategies Considered					
	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	1
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 46,111.66$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	1	$\$ 0$

[^3]
Rural Segment Project on CSAH 6

Roadway Information

Shoulder Width (ft): 8
Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	1	0	1	0
Density (per mile per yr):	0.07	0	0.07	0
Rate (per MVM):	0.14	0	0.14	0

Systemic Safety Risk Factors

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 8,953.54$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 8,953.54$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	$\$ 0$	
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$

[^4]
Rural Segment Project on CSAH 8

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	1	0	0	Severe Lane Departure
Density (per mile per yr):	0.03	0	0	0
Rate (per MVM):	0.4	0	0	0
			0	

Systemic Safety Risk Factors

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:	Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:	Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:	Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Edgeline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Shoulder Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:	Proactive	\$2,700	per mile	1	\$16,875.72
Systemic Project				timated Pr	\$16,875.72

Rural Segment Project on CSAH 10

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	7	1	4	Severe Lane Departure
Density (per mile per yr):	0.2	0.03	0.11	1
Rate (per MVM):	0.31	0.04	0.17	0.03
				0.04

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	1800	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	1800	$x x \geq 1,250$		\star
Curve Density (cur per mile):	0.14	$x x \geq 0.6$		-
Access Density (access per mile):	8.47	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2 S or 3		-
			Total Stars:	$\star \star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	1	\$20,897.83
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	1	\$20,897.83
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$18,808.04
Systemic Project	\checkmark				Total Estimated Project Cost	\$60,603.69

Rural Segment Project on CSAH 10

Roadway Information

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	20	2	14	2
Density (per mile per yr):	0.27	0.03	0.19	0.03
Rate (per MVM):	0.35	0.04	0.25	0.04

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	2100	$500 \leq x x \leq 2,000$	
ADT-RM (Rural Multi-veh) (vpd):	2100	$x x \geq 1,250$	\star
Curve Density (cur per mile):	0.61	$\mathrm{xx} \geq 0.6$	\star
Access Density (access per mile):	9.44	$7 \leq x x \leq 18$	*
Outside Edge Risk:	1	2S or 3	-
Priority Location $\quad \checkmark$			*ᄎᄎᄎ

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	1	\$44,509.73
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	1	\$44,509.73
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$40,058.76
Systemic Project	\checkmark				Total Estimated Project Cost	\$129,078.23

Rural Segment Project on CSAH 11

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	0	Severe Lane Departure
Density (per mile per yr):	0.09	0	0	0
Rate (per MVM):	0.24	0	0	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

Rural Segment Project on CSAH 11

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	1	1	0	Severe Lane Departure
Density (per mile per yr):	0.34	0.34	0	0
Rate (per MVM):	0.51	0.51	0	0
				0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	1800	$500 \leq x x \leq 2,000$	\star
ADT-RM (Rural Multi-veh) (vpd):	1800	$x x \geq 1,250$	\star
Curve Density (cur per mile):	3.35	$x \mathrm{x} \geq 0.6$	\star
Access Density (access per mile):	10.06	$7 \leq x x \leq 18$	\star
Outside Edge Risk:	1	2 S or 3	-
Priority Location $\quad \checkmark$			*ᄎᄎᄎᄎ

List of Strategies Considered

[^5]Total Estimated Project Cost $\$ 5,187.85$
\square

Rural Segment Project on CSAH 11

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	0	0	0	Severe Lane Departure
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 4,273.8$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 4,273.8$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	$\$ 0$	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	1

[^6]Total Estimated Project Cost $\$ 12,394.01$
\square

Rural Segment Project on CSAH 11

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	7	1	5	Severe Leparture
Density (per mile per yr):	0.28	0.04	0.2	1
Rate (per MVM):	0.63	0.09	0.45	0.04
				0.09

Systemic Safety Risk Factors

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	1	\$15,177.86
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	1	\$15,177.86
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$13,660.08
Systemic Project	\checkmark				Total Estimated Project Cost	\$44,015.81

\square

Rural Segment Project on CSAH 12

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	9	0	2	Severe Lane Departure
Density (per mile per yr):	1.32	0	0.29	0
Rate (per MVM):	0.56	0	0.12	0
				0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	6500	$500 \leq x x \leq 2,000$	
ADT-RM (Rural Multi-veh) (vpd):	6500	$x x \geq 1,250$	\star
Curve Density (cur per mile):	0.73	$x x \geq 0.6$	\star
Access Density (access per mile):	8.8	$7 \leq x x \leq 18$	\star
Outside Edge Risk:	1	2 S or 3	-
			$\star \star \star \star$
Priority Location $\sqrt{ }$			

List of Strategies Considered

Rural Segment Project on CSAH 12

Roadway Information

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	9	0	1	0
Density (per mile per yr):	0.29	0	0.03	0
Rate (per MVM):	0.58	0	0.06	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	1360	$500 \leq x x \leq 2,000$	\star
ADT-RM (Rural Multi-veh) (vpd):	1360	$x x \geq 1,250$	\star
Curve Density (cur per mile):	0	$\mathrm{xx} \geq 0.6$	-
Access Density (access per mile):	7.3	$7 \leq x x \leq 18$	*
Outside Edge Risk:	1	2S or 3	-
Priority Location $\quad \checkmark$			*ᄎᄎ ${ }^{\text {a }}$

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	1	\$18,901.19
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	1	\$18,901.19
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$17,011.07
Systemic Project	\checkmark				Total Estimated Project Cost	\$54,813.45

Rural Segment Project on CSAH 14

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	4	0	1	Severe Lane Departure
Density (per mile per yr):	0.27	0	0.07	0
Rate (per MVM):	0.53	0	0.13	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 9,006.39$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 9,006.39$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	$\$ 0$	
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$

| Systemic Project | \checkmark |
| :--- | :--- |\quad Total Estimated Project Cost $\$ 26,118.54$

Rural Segment Project on CSAH 18

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	15	2	7	Severe Lane Departure
Density (per mile per yr):	0.27	0.04	0.12	1
Rate (per MVM):	0.65	0.09	0.3	0.02
				0.04

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	1125	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	1125	$x x \geq 1,250$		-
Curve Density (cur per mile):	0	$x x \geq 0.6$		-
Access Density (access per mile):	8.04	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2 S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:	Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:	Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:	Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:	Proactive	\$3,000	per mile	1	\$33,943.73
Edgeline Rumble Strip:	Proactive	\$3,000	per mile	1	\$33,943.73
Shoulder Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:	Proactive	\$2,700	per mile	1	\$30,549.36

[^7]
Rural Segment Project on CSAH 19

Roadway Information

Shoulder Width (ft): 0
Crash Information

$5-$ year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

List of Strategies Considered

Rural Segment Project on CSAH 19

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	1	0	1	Severe Lane Departure
Density (per mile per yr):	0.11	0	0.11	0
Rate (per MVM):	0.64	0	0.64	0
				0

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	455	$500 \leq x x \leq 2,000$		-
ADT-RM (Rural Multi-veh) (vpd):	455	$x x \geq 1,250$		
Curve Density (cur per mile):	0.53	$x x \geq 0.6$		\star
Access Density (access per mile):	9.53	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	2 S	2 S or 3		\star
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

Rural Segment Project on CSAH 19

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	0	0	0	Severe Leparture
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0
				0

Systemic Safety Risk Factors

	Value	Threshold		Star Assignment
Speed Limit (mph):	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	50	$500 \leq x x \leq 2,000$		
ADT-RM (Rural Multi-veh) (vpd):	50	$x x \geq 1,250$		
Curve Density (cur per mile):	1.26	$x x \geq 0.6$		\star
Access Density (access per mile):	28.91	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	2 S	2 S or 3		\star
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

List of Strategies Considered					
Buffer Between Opposing Lanes:	Type	Unit Cost	Unit	Quantity	Total Cost
Clear Zone Enhancements:	Proactive	$\$ 150,000$	$\$ 100,000$	per mile	0
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	per mile	0
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$

[^8]\square

Rural Segment Project on CSAH 20

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	0	0	0	Severe Lane Departure
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0
				0

Systemic Safety Risk Factors

	Value	Threshold		Star Assignment
Speed Limit (mph):	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	300	$500 \leq x x \leq 2,000$		-
ADT-RM (Rural Multi-veh) (vpd):	300	$x x \geq 1,250$		
Curve Density (cur per mile):	0	$x x \geq 0.6$		*
Access Density (access per mile):	9.47	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	2S	2S or 3		\star
			Total Stars:	$\star \star \star$
Priority Location $\quad \sqrt{ }$				

List of Strategies Considered

Rural Segment Project on CSAH 23

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	1	Severe Lane Departure
Density (per mile per yr):	0.13	0	0.07	0
Rate (per MVM):	0.27	0	0.14	0
				0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	1350	$500 \leq x \leq \leq 2,000$	\star
ADT-RM (Rural Multi-veh) (vpd):	1350	$x x \geq 1,250$	\star
Curve Density (cur per mile):	0	$x x \geq 0.6$	-
Access Density (access per mile):	13.41	$7 \leq x x \leq 18$	\star
Outside Edge Risk:		1	$2 S$ or 3
			Total Stars:
Priority Location	V		

List of Strategies Considered

Rural Segment Project on CSAH 26

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	9	1	4	Severe Lane Departure
Density (per mile per yr):	0.14	0.02	0.06	1
Rate (per MVM):	0.14	0.02	0.06	0.02
				0.02

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	2675	$500 \leq x x \leq 2,000$		-
ADT-RM (Rural Multi-veh) (vpd):	2675	$x x \geq 1,250$		\star
Curve Density (cur per mile):	0.23	$x x \geq 0.6$		-
Access Density (access per mile):	8.97	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2 S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:	Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:	Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:	Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Edgeline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Shoulder Rumble Strip:	Proactive	\$3,000	per mile	1	\$39,122.13
Enhanced Edgeline:	Proactive	\$2,700	per mile	1	\$35,209.92
Systemic Project				Total Estimated Project Cost	\$74,332.05

Rural Segment Project on CSAH 26

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	6	0	2	Severe Lane Departure
Density (per mile per yr):	0.09	0	0.03	0
Rate (per MVM):	0.13	0	0.04	0
				0

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	1950	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	1950	$x x \geq 1,250$		\star
Curve Density (cur per mile):	0	$x x \geq 0.6$		-
Access Density (access per mile):	7.08	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2 S or 3		-
			Total Stars:	$\star \star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 39,802.65$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 39,802.65$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	$\$ 0$	
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$

[^9]
Rural Segment Project on CSAH 26

Roadway Information

Shoulder Width (ft): 8
Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	3	0	1	0
Density (per mile per yr):	0.15	0	0.05	0
Rate (per MVM):	0.62	0	0.21	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	663	$500 \leq x x \leq 2,000$	\star
ADT-RM (Rural Multi-veh) (vpd):	663	$x x \geq 1,250$	-
Curve Density (cur per mile):	0	$x x \geq 0.6$	-
Access Density (access per mile):	11.2	$7 \leq x x \leq 18$	\star
Outside Edge Risk:		1	$2 S$ or 3
Priority Location	\checkmark		

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:	Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:	Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:	Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Edgeline Rumble Strip:	Proactive	\$3,000	per mile	1	\$12,049.27
Shoulder Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:	Proactive	\$2,700	per mile	1	\$10,844.35
Systemic Project				Total Estimated Project Cost	\$22,893.62

Rural Segment Project on CSAH 31

Roadway Information

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	6	0	3	0
Density (per mile per yr):	0.07	0	0.03	0
Rate (per MVM):	0.34	0	0.17	0

Systemic Safety Risk Factors

List of Strategies Considered

Rural Segment Project on CSAH 33

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	3	0	1	Severe Lane Departure
Density (per mile per yr):	0.09	0	0.03	0
Rate (per MVM):	0.25	0	0.08	0
			0	

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	1025	$500 \leq x \leq \leq 2,000$	\star
ADT-RM (Rural Multi-veh) (vpd):	1025	$x x \geq 1,250$	-
Curve Density (cur per mile):	0.31	$x x \geq 0.6$	-
Access Density (access per mile):	10.38	$7 \leq x x \leq 18$	\star
Outside Edge Risk:		1	$2 S$ or 3
			Total Stars:
Priority Location	V		

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 19,355.11$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	$\$ 19,355.11$	
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	$\$ 0$	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	1	$\$ 17,419.6$

[^10]\square

Rural Segment Project on CSAH 33

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	0	Severe Lane Departure
Density (per mile per yr):	0.06	0	0	0
Rate (per MVM):	0.34	0	0	0
				0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	455	$500 \leq x x \leq 2,000$	
ADT-RM (Rural Multi-veh) (vpd):	455	$x x \geq 1,250$	
Curve Density (cur per mile):	0	$x x \geq 0.6$	\star
Access Density (access per mile):	7.14	$7 \leq x x \leq 18$	\star
Outside Edge Risk:	2 S	$2 S \text { or } 3$	\star
			$\star \star \star$
Priority Location $\sqrt{ }$			

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 1$

[^11]\square

Rural Segment Project on CSAH 34

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	1	Severe Lane Departure
Density (per mile per yr):	0.04	0	0.02	0
Rate (per MVM):	0.12	0	0.06	0
				0

Systemic Safety Risk Factors

	Value	Threshold		Star Assignment
Speed Limit (mph):	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	800	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	800	$x x \geq 1,250$		-
Curve Density (cur per mile):	0	$x x \geq 0.6$		
Access Density (access per mile):	7.21	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

List of Strategies Considered					
Buffer Between Opposing Lanes:	Type	Unit Cost	Unit	Quantity	Total Cost
Clear Zone Enhancements:	Proactive	$\$ 150,000$	$\$ 100,000$	per mile	0
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	per mile	0
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	1	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 33,309.15$

[^12]
Rural Segment Project on CSAH 34

Roadway Information

Shoulder Width (ft): 8
Click to View in Google Maps
Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	770	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	770	$x x \geq 1,250$		-
Curve Density (cur per mile):	0	$x x \geq 0.6$		-
Access Density (access per mile):	10.26	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

Rural Segment Project on CSAH 35

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	1	Severe Lane Departure
Density (per mile per yr):	0.17	0	0.08	0
Rate (per MVM):	1.75	0	0.87	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 6,390.43$

[^13]
Rural Segment Project on CSAH 36

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	0	0	0	Severe Lane Departure
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

List of Strategies Considered					
Buffer Between Opposing Lanes:	Type	Unit Cost	Unit	Quantity	Total Cost
Clear Zone Enhancements:	Proactive	$\$ 150,000$	$\$ 100,000$	per mile	0
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	per mile	0
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$

[^14]\square

Rural Segment Project on CSAH 52

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	1	0	0	Severe Lane Departure
Density (per mile per yr):	0.2	0	0	0
Rate (per MVM):	0.62	0	0	0
				0

Systemic Safety Risk Factors

Speed Limit (mph):	Value	Threshold		Star Assignment
	55	≥ 55		\star
ADT-RS (Rural Single-veh) (vpd):	860	$500 \leq x x \leq 2,000$		\star
ADT-RM (Rural Multi-veh) (vpd):	860	$x x \geq 1,250$		-
Curve Density (cur per mile):	0	$x x \geq 0.6$		
Access Density (access per mile):	17.65	$7 \leq x x \leq 18$		\star
Outside Edge Risk:	1	2 S or 3		-
			Total Stars:	$\star \star \star$
Priority Location $\sqrt{ }$				

List of Strategies Considered

Rural Segment Project on CSAH 52

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	9	0	4	Severe Lane Departure
Density (per mile per yr):	0.15	0	0.06	0
Rate (per MVM):	0.29	0	0.13	0
				0

Systemic Safety Risk Factors

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:	Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:	Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:	Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:	Proactive	\$3,000	per mile	1	\$36,961.62
Edgeline Rumble Strip:	Proactive	\$3,000	per mile	1	\$36,961.62
Shoulder Rumble Strip:	Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:	Proactive	\$2,700	per mile	1	\$33,265.45

| Systemic Project | \checkmark |
| :--- | :--- |\quad Total Estimated Project Cost $\$ 107,188.69$

Rural Segment Project on CSAH 52

Roadway Information

Crash Information		Severe Crash Count	Total 5-year Crash History (2016-2020)	Total
Crash Frequency:	2	0	1	Severe Lane Departure
Density (per mile per yr):	0.27	0	0.13	0
Rate (per MVM):	0.17	0	0.09	0
				0

Systemic Safety Risk Factors

	Value	Threshold		Star Assignment		
Speed Limit (mph):	55	≥ 55		\star		
ADT-RS (Rural Single-veh) (vpd):	4200	$500 \leq x x \leq 2,000$				
ADT-RM (Rural Multi-veh) (vpd):	4200	$x x \geq 1,250$		\star		
Curve Density (cur per mile):	0	$\mathrm{xx} \geq 0.6$				
Access Density (access per mile):	13.39	$7 \leq x x \leq 18$		\star		
Outside Edge Risk:	1	2 S or 3				
		Total Stars:		* \star *		
Priority Location $\quad \checkmark$						
List of Strategies Considered						
	Type	Unit Cost	Unit		Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	\$150,000	per mile	1	\$224,126.24	
Clear Zone Enhancements:	Proactive	\$100,000	per mile	0	\$0	
Wet Reflective Paint in Groove:	Proactive	\$2,700	per mile	0	\$0	
Shoulder Paving, Safety Edge:	Proactive	\$50,000	per mile	0	\$0	
Centerline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0	
Edgeline Rumble Strip:	Proactive	\$3,000	per mile	0	\$0	
Shoulder Rumble Strip:	Proactive	\$3,000	per mile	0	\$0	
Enhanced Edgeline:	Proactive	\$2,700	per mile	0	\$0	

[^15]
Rural Segment Project on CR 96

Roadway Information

Crash Information	Severe Crash Count	Total 5-year Crash History (2016-2020)	Total	2
Crash Frequency:	6	0.1	2	Severe Leparture
Density (per mile per yr):	0.3	0.6	0.1	1
Rate (per MVM):	1.81	0.6	0.05	
				0.3

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	457	$500 \leq x x \leq 2,000$	
ADT-RM (Rural Multi-veh) (vpd):	457	$x x \geq 1,250$	
Curve Density (cur per mile):	0.76	$x x \geq 0.6$	\star
Access Density (access per mile):	12.84	$7 \leq x x \leq 18$	\star
Outside Edge Risk:	2S	2 S or 3	\star
			$\star \star \star \star$
Priority Location $\sqrt{ }$			

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$10,720.51
Systemic Project	\checkmark				Total Estimated Project Cost	\$10,720.51

Roadway Information

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Speed Limit (mph):	55	≥ 55	\star
ADT-RS (Rural Single-veh) (vpd):	60	$500 \leq x x \leq 2,000$	
ADT-RM (Rural Multi-veh) (vpd):	60	$x x \geq 1,250$	
Curve Density (cur per mile):	0.76	$x \mathrm{x} \geq 0.6$	\star
Access Density (access per mile):	7.22	$7 \leq x x \leq 18$	\star
Outside Edge Risk:	2 S	2 S or 3	\star
			$\star \star \star \star$
Priority Location $\quad \checkmark$			

List of Strategies Considered

		Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:		Proactive	\$150,000	per mile	0	\$0
Clear Zone Enhancements:		Proactive	\$100,000	per mile	0	\$0
6" Wet Reflective Paint in Groove:		Proactive	\$2,700	per mile	0	\$0
Shoulder Paving, Safety Edge:		Proactive	\$50,000	per mile	0	\$0
Centerline Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Edgeline Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Shoulder Rumble Strip:		Proactive	\$3,000	per mile	0	\$0
Enhanced Edgeline:		Proactive	\$2,700	per mile	1	\$14,209.55
Systemic Project	\checkmark				Total Estimated Project Cost	\$14,209.55

Rural Segment Project on CR 108

Roadway Information

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

List of Strategies Considered

[^16]
Rural Segment Project on CR 108

Roadway Information

$\begin{array}{rcccc}\hline \text { Crash Information } & & \begin{array}{c}\text { Severe } \\ \text { Crash Count }\end{array} & \begin{array}{c}\text { Total } \\ \text { 5-year Crash History (2016-2020) }\end{array} & \text { Total } \\$\cline { 2 - 5 } \& 0 \& 0 \& 0 \& $\left.\begin{array}{c}\text { Severe } \\ \text { Lash Frequency: }\end{array} \\ \text { Lense Departure }\end{array}\right]$

Systemic Safety Risk Factors

List of Strategies Considered

List of Strategies Considered					
	Type	Unit Cost	Unit	Quantity	Total Cost
Buffer Between Opposing Lanes:	Proactive	$\$ 150,000$	per mile	0	$\$ 0$
Clear Zone Enhancements:	Proactive	$\$ 100,000$	per mile	0	$\$ 0$
6" Wet Reflective Paint in Groove:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$
Shoulder Paving, Safety Edge:	Proactive	$\$ 50,000$	per mile	0	$\$ 0$
Centerline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Edgeline Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Shoulder Rumble Strip:	Proactive	$\$ 3,000$	per mile	0	$\$ 0$
Enhanced Edgeline:	Proactive	$\$ 2,700$	per mile	0	$\$ 0$

[^17]
Roadway Information

Segment Start: North of Intersection of Wall St Ave NW / Broadway st NW
Segment End: Intersection of Wall St Ave NW / Broadway st NW
Area Type: Rural
County: Clay
Context Zone: Residential
Segment Route System: CSAH
Segment Route No: 1
Curve Length (ft): 334.65
Curve Radius (ft): 256.2
Traffic Volume (vpd): 920
Lane Width (ft): 12
Shoulder Type: Paved
Shoulder Width (ft): 0

Click to View in Google Maps

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment
Radius (ft):	256.2	$500 \leq x \times 1400$	\star
ADT (vpd):	920	$200 \leq x x<800$	-
Lane Width (ft):	12	<12	-
Shoulder Type:	Paved	None, Gravel, Composite	-
Total Cross Section Width (ft)	32	$28 \leq x x<34$	\star
Adjacent Intersection:	Intersection	Roadway or Railroad Crossing	\star
Visual Trap:	None	Present	
Outside Edge Risk:	1	$2 S$ or 3 deficiencies	-

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Clear Zone Enhancements:	Proactive	$\$ 100,000$	Per curve	0	$\$ 0$
High Friction Surface Treatment:	Proactive	$\$ 30 / \mathrm{sq}$ yd	Per sq yd	0	$\$ 0$
Reconstruct TT to Single T:	Proactive	$\$ 400,000$	Per curve	0	$\$ 0$
Lighting:	Proactive	$\$ 15,000$	Per light/curve	0	$\$ 0$
Curve Warning Sign:	Proactive	$\$ 1,000$	Per curve	0	$\$ 0$
Speed Advisory Signs:	Proactive	$\$ 1,000$	Per curve	0	$\$ 0$
Chevrons/Arrow Board:	Proactive	$\$ 2,500$	Per curve	1	$\$ 2,500$
Systemic Project	V			Total Estimated Project Cost:	$\$ 2,500$

County Completed - Curve Warning Sign

Project Page \#:	11
Segment ID:	1.002
Date:	$3 / 30 / 2023$

Roadway Information

Segment Start: . 08 Miles North of Intersection of CSAH31/CR 127 and CSAH 19
Segment End: 229 ft South of Intersection of Roger St and 230th St
Area Type: Rural
County: Clay
Context Zone: Agriculture
Segment Route System: CSAH
Segment Route No: 31
Curve Length (ft): 321.44
Curve Radius (ft): 374.84
Traffic Volume (vpd): 970
Lane Width (ft): 12
Shoulder Type: Paved
Shoulder Width (ft): 6

Click to View in Google Maps

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	2	0	2	0
Density (per mile per yr):	0.4	0	0.4	0
Rate (per MVM):	1.13	0	1.13	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Radius (ft):	374.84	$500 \leq \mathrm{xx}<1400$	\star		
ADT (vpd):	970	$200 \leq x x<800$	-		
Lane Width (ft):	12	< 12	-		
Shoulder Type:	Paved	None, Gravel, Composite	-		
Total Cross Section Width (ft)	32	$28 \leq x x<34$	\star		
Adjacent Intersection:	Railroad	Roadway or Railroad Crossing	\star		
Visual Trap:	None	Present	-		
Outside Edge Risk:	2 C	2S or 3 deficiencies	-	Priority Location	\checkmark

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Clear Zone Enhancements:	Proactive	$\$ 100,000$	Per curve	1	$\$ 100,000$
High Friction Surface Treatment:	Proactive	$\$ 30 /$ sq yd	Per sq yd	0	$\$ 0$
Reconstruct TT to Single T:	Proactive	$\$ 400,000$	Per curve	0	$\$ 0$
Lighting:	Proactive	$\$ 15,000$	Per light/curve	0	$\$ 0$
Curve Warning Sign:	Proactive	$\$ 1,000$	Per curve	0	$\$ 0$
Speed Advisory Signs:	Proactive	$\$ 1,000$	Per curve	0	$\$ 0$
Chevrons/Arrow Board:	Proactive	$\$ 2,500$	Per curve	0	$\$ 0$
Systemic Project	V			Total Estimated Project Cost:	$\$ 100,000$

Project Page \#:	15
Segment ID:	31.006
Date:	$3 / 30 / 2023$

Roadway Information

Segment Start: 528 ft North of Intersection of CR100/Howard St and CR 100
Segment End: Intersection of CR 100 and CR 102
Area Type: Rural
County: Clay
Context Zone: Agriculture
Segment Route System: CR
Segment Route No: 100
Curve Length (ft): 666.66
Curve Radius (ft): 123.26
Traffic Volume (vpd): 60
Lane Width (ft): 10
Shoulder Type: None
Shoulder Width (ft): 0

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Radius (ft):	123.26	$500 \leq \mathrm{xx}<1400$	-		
ADT (vpd):	60	$200 \leq x x<800$	-		
Lane Width (ft):	10	<12	\star		
Shoulder Type:	None	None, Gravel, Composite	\star		
Total Cross Section Width (ft)	20	$28 \leq x x<34$	-		
Adjacent Intersection:	Intersection	Roadway or Railroad Crossing	\star		
Visual Trap:	Present	Present	\star		
Outside Edge Risk:	2S	2S or 3 deficiencies	\star	Priority Location	\checkmark

List of Strategies Considered

	Type	Unit Cost	Unit	Quantity	Total Cost
Clear Zone Enhancements:	Proactive	$\$ 100,000$	Per curve	0	$\$ 0$
High Friction Surface Treatment:	Proactive	$\$ 30 / \mathrm{sq}$ yd	Per sq yd	0	$\$ 0$
Reconstruct TT to Single T:	Proactive	$\$ 400,000$	Per curve	0	$\$ 0$
Lighting:	Proactive	$\$ 15,000$	Per light/curve	0	$\$ 0$
Curve Warning Sign:	Proactive	$\$ 1,000$	Per curve	1	$\$ 1,000$
Speed Advisory Signs:	Proactive	$\$ 1,000$	Per curve	1	$\$ 1,000$
Chevrons/Arrow Board:	Proactive	$\$ 2,500$	Per curve	1	$\$ 2,500$
Systemic Project	V			Total Estimated Project Cost:	$\$ 4,500$

\square

Roadway Information

Segment Start:	528 ft North of Intersection of CR100/Howard St and CR 100
Segment End:	Intersection of CR 100 and CR 102
Area Type:	Rural
County:	Clay
Context Zone:	Agriculture
Segment Route System:	CR
Segment Route No:	100
Curve Length (ft):	558.4
Curve Radius (ft):	201.98
Sraffic Volume (vpd):	60
Shoulder Type:	None
Shoulder Width (ft):	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Radius (ft):	201.98	$500 \leq x x<1400$	\star		
ADT (vpd):	60	$200 \leq x x<800$	-		
Lane Width (ft):	10	<12	\star		
Shoulder Type:	None	None, Gravel, Composite	\star		
Total Cross Section Width (ft)	20	$28 \leq x x<34$	-		
Adjacent Intersection:	None	Roadway or Railroad Crossing	-		
Visual Trap:	None	Present	-		
Outside Edge Risk:	2S	2 S or 3 deficiencies	\star	Priority Location	\checkmark

List of Strategies Considered

Project Page \#:	8
Segment ID:	100.002
Date:	$3 / 30 / 2023$

Rural Intersection on MN 32 (270th St S)

Roadway Information

Click to View in Google Maps

Crash Information				
5 -year Crash History (2016-2020)	Sotal	Total Right Angle	Severe Right Angle	
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

Rural Intersection on MN 9

Roadway Information

Description:	MN 9 \& CSAH 10 (90th Ave S)
County:	Clay
Area Type:	Small Town
Context Zone:	Residential
Segment Route System:	CSAH
Segment Route No:	10
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	None
Major ADT:	980
Minor ADT:	2,900
Total Entering ADT:	3,880

Click to View in Google Maps

Crash Information				
5-year Crash History (2016	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	2	0	2	0
Density (per mile per yr):	0.4	0	0.4	0
Rate (per MVM):	0.3	0	0.3	0

Systemic Safety Risk Factors

		Value		old	Star Assignment		
Major Approach Speed Lim	(mph):	60			\star		
Cont	xt Zone:	Residential	Commercial, In	lixed Use, Residential	\star		
Entering	T(vpd):	3,880			\star		
OR Traffic Volume Cross	Product:	2,842,000		000			
Leg Con	uration:	X			\star		
Alignment Skew(grees):	40			\star		
Adjace	Curve:	None		nal,	*		
Adjacent Dev	opment:	None		Both	-		
Adjacent RR	Cossing:	2			-		
Previ	us Stop:	>5			\star		
1st Major Turn Lane Con	pproach uration:	2		TB	-		
				Total Stars:	丸ᄎᄎᄎᄎᄎ	Priority Location	\checkmark
List of Strateg	on	ered					
		Type	Unit Cost	Unit	Quantity	Total Cos	
Reconstruct TT to Si	gle T :	Proactive	\$400,000	Per Intersection	0	\$0	
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0	
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0	
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	0	\$0	
Thru-Stop to All Way Stop	Yield:	Proactive	\$3,000	Per Intersection	0	\$0	
Left-Turn Lanes on Major	Road:	Proactive	\$250,000	Each	0	\$0	
	hting:	Proactive	\$15,000	Each	1	\$15,000	
Review Signs and Ma	ings:	Proactive	\$0	Per Intersection	0	\$0	
Upgrade Signs \& Ma	ings:	Proactive	\$1,500	Per Intersection	0	\$0	
					Total Estimated Pro	ost \$15,000	
Systemic Project	\checkmark						

Project Page \#:	2
Segment ID:	10.008
Date:	$3 / 31 / 2023$

Rural Intersection on MN 32

Roadway Information

Description:	MN $32 \&$ CSAH 10 (90th Ave S)
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	10
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	None
Major ADT:	870
Minor ADT:	2,700
Total Entering ADT:	3,570

Click to View in Google Maps

Crash Information				
5-year Crash History (2016-2020)	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	1	0	0	
Density (per mile per yr):	0.2	0	0.2	0
Rate (per MVM):	0.2	0	0.2	0
			0	

Systemic Safety Risk Factors

		Value	Threshold		Star Assignment			
Major Approach Speed Limit (mph): Context Zone:		60	≥ 60		\star			
		Agriculture	Commercial, Industrial, Mixed Use, Residential		-			
Entering ADT(vpd):		3,570	$\geq 2,000$		\star			
		2,349,000	$\geq 1,000,000$		\star			
Leg Configuration: Alignment Skew(degrees):		X	$\underset{>10}{ }$					
		45	$\xrightarrow{\geq 10}$		\star			
Alignment Adjacent Curve:		None	Horizontal,		*			
Adjacent Development:		None	Present		-			
Adjacent RR Crossing:		1	Present		-			
Previ	us Stop:	>5			\star			
1st Major Approach Turn Lane Configuration:		1	LTTR or TB		-	Priority Location		
				$\star \star \star \star \star$				
			Total Stars:		\checkmark			
List of Strategies Considered								
			Type	Unit Cost	Unit	Quantity	Total Cos	
Reconstruct TT to Single T:				\$400,000	Per Intersection	0	\$0	
Roundabout:		Proactive	\$2,500,000	Per Intersection	0	\$0		
J-Turn:		Proactive	\$1,000,000	Per Intersection	0	\$0		
LED Stop Sign:		Proactive	\$2,000-6,000	Each	1	\$2,000		
Thru-Stop to All Way Stop/Yield:		Proactive	\$3,000	Per Intersection	0	\$0		
Left-Turn Lanes on Major Road:		Proactive	\$250,000	Each	0	\$0		
Lighting:		Proactive	\$15,000	Each	1	\$15,000		
Review Signs and Markings:		Proactive	\$0	Per Intersection	0	\$0		
Upgrade Signs \& Markings:		Proactive	\$1,500	Per Intersection	0	\$0		
					Total Estimated Pro	ost \$17,000		
Systemic Project	\checkmark							

Project Page \#:	5
Segment ID:	10.015
Date:	$3 / 31 / 2023$

Rural Intersection on CSAH 11 (70th St N)

Roadway Information

Click to View in Google Maps
$\left.\begin{array}{rcccc}\hline \text { Crash Information } & & & \begin{array}{c}\text { Total } \\ 5 \text {-year Crash History (2016-2020) }\end{array} & \text { Total }\end{array} \begin{array}{c}\text { Severe } \\ \text { Right Angle }\end{array}\right)$

Systemic Safety Risk Factors

		Value		old	Star Assignment		
Major Approach Speed Lim	it (mph):	55			-		
Cont	xt Zone:	Agriculture	Commercial,	lixed Use, Residential	-		
Entering A	T(vpd):	3,000		0	\star		
OR Traffic Volume Cross	Product:	2,160,000		000			
Leg Confi	guration:	X			\star		
Alignment Skew(egrees):	0			-		
Adjace	t Curve:	None		ntal,	-		
Adjacent Deve	opment:	None		Both	-		
Adjacent RR	rossing:	2			\star		
Previ	us Stop:	>5			\star		
1st Major Turn Lane Conf	pproach guration:	2		TB	-		
				Total Stars:	$\star \star \star$	Priority Location	\checkmark
List of Strategie	Cons	ered					
		Type	Unit Cost	Unit	Quantity	Total Cos	
Reconstruct TT to Sin	gle T :	Proactive	\$400,000	Per Intersection	0	\$0	
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0	
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0	
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	1	\$2,000	
Thru-Stop to All Way Stop	Yield:	Proactive	\$3,000	Per Intersection	0	\$0	
Left-Turn Lanes on Major	Road:	Proactive	\$250,000	Each	0	\$0	
	ting:	Proactive	\$15,000	Each	1	\$15,000	
Review Signs and Mar	ings:	Proactive	\$0	Per Intersection	0	\$0	
Upgrade Signs \& Mar	ings:	Proactive	\$1,500	Per Intersection	0	\$0	
					Total Estimated Pro	ost \$17,000	
Systemic Project	\checkmark						

Project Page \#:	47
Segment ID:	11.013
Date:	$3 / 31 / 2023$

Rural Intersection on CSAH 12 (60th Ave S)

Roadway Information

Description:	CSAH $12(60$ th Ave S) \& CSAH 52
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	12
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	None
Major ADT:	2,300
Minor ADT:	4,200
Total Entering ADT:	6,500

Click to View in Google Maps

Crash Information			Total 5 -year Crash History (2016-2020)	Total
Right Angle	6	Severe Right Angle		
Crash Frequency:	10	0	0	
Density (per mile per yr):	2	0	1.2	0
Rate (per MVM):	0.8	0	0.5	0

Systemic Safety Risk Factors

		Value		old	Star Assignment		
Major Approach Speed Li	(mph):	55			-		
Con	xt Zone:	Agriculture	Commercial, In	Mixed Use, Residential			
Entering	T(vpd):	6,500		00	\star		
OR Traffic Volume Cross	Product:	9,660,000		000			
Leg Con	uration:	X			\star		
Alignment Skew(egrees):	45			\star		
Adjace	Curve:	None		ntal,	-		
Adjacent Dev	pment:	None		Both	-		
Adjacent RR	rossing:	10			\star		
Prev	us Stop:	<5			-		
1st Major	pproach uration:	10		r TB	-		
				Total Stars:	$\star \star \star \star$	Priority Location	\checkmark
List of Strategie	Cons	red					
		Type	Unit Cost	Unit	Quantity	Total Cos	
Reconstruct TT to S	gle	Proactive	\$400,000	Per Intersection	0	\$0	
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0	
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0	
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	0	\$0	
Thru-Stop to All Way Stop	ield:	Proactive	\$3,000	Per Intersection	0	\$0	
Left-Turn Lanes on Major	oad:	Proactive	\$250,000	Each	0	\$0	
	ting:	Proactive	\$15,000	Each	1	\$15,000	
Review Signs and Ma	ings:	Proactive	\$0	Per Intersection	0	\$0	
Upgrade Signs \& Ma	ings:	Proactive	\$1,500	Per Intersection	0	\$0	
					Total Estimated Pro	ost \$15,000	
Systemic Project	\checkmark						

Project Page \#:	14
Segment ID:	12.003
Date:	$3 / 31 / 2023$

Rural Intersection on MN 9 (140th St S)

Roadway Information

Description:	MN $9(140$ th St S) \& CSAH 12
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	12
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	None
Major ADT:	1,015
Minor ADT:	202
Total Entering ADT:	1,218

Click to View in Google Maps
$\left.\begin{array}{rcccc}\hline \text { Crash Information } & & & \begin{array}{c}\text { Total } \\ 5 \text {-year Crash History (2016-2020) }\end{array} & \text { Total }\end{array} \begin{array}{c}\text { Severe } \\ \text { Right Angle }\end{array}\right)$

Systemic Safety Risk Factors

Rural Intersection on CSAH 21 (130th St S)

Roadway Information

Description:	CSAH 21 (130th St S) \& CSAH 52
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	20
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	None
Major ADT:	220
Minor ADT:	1,400
Total Entering ADT:	1,620

Click to View in Google Maps

Crash Information				
5-year Crash History (2016	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	3	0	3	0
Density (per mile per yr):	0.6	0	0.6	0
Rate (per MVM):	1	0	1	0

Systemic Safety Risk Factors

Rural Intersection on US 75

Roadway Information

Description:	US 75 \& CSAH 22 (Wall Street Ave N)
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	22
Design Type:	Traditional
Configuration:	T
Traffic Control Device:	Thru-Stop
Street Lights:	Present
Flasher:	None
Major ADT:	3,425
Minor ADT:	1,575
Total Entering ADT:	5,000

Click to View in Google Maps

Crash Information			Total 5 -year Crash History (2016-2020)	Total
	Severe	0	0	Severe Right Angle
Crash Frequency:	2	0	0	0
Density (per mile per yr):	0.4	0	0	0
Rate (per MVM):	0.2		0	

Systemic Safety Risk Factors

Rural Intersection on US 75

Roadway Information

Description:	US 75 \& CSAH 26 (90th Ave N)
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	26
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	Present
Flasher:	None
Major ADT:	2,525
Minor ADT:	2,775
Total Entering ADT:	5,300

Click to View in Google Maps

Crash Information			Total 5-year Crash History (2016 - 2020)	Total
	Severe	1	2	0
Crash Frequency:	5	0.2	0.4	0
Rensht Angle				

Systemic Safety Risk Factors

		Value	Threshold		Star Assignment			
Major Approach Speed Limit (mph): Context Zone: Entering ADT(vpd):		60	≥ 60		\star			
		Agriculture 5,300	Commercial, Industrial, Mixed Use, Residential		\star			
		$\geq 2,000$	\star					
OR Traffic Volume Cross Product:			7,006,875	$\geq 1,000,000$				
Leg Configuration:		X	X		\star			
		None	Horizontal,		-			
Adjacent Curve:			Vertical, Both		-			
Adjacent Development: Adjacent RR Crossing:		None	Present		\star			
		5	Present > 5 Miles		\star			
Adjacent RR Crossing: Previous Stop: 1st Major Approach Turn Lane Configuration:		>5						
		5	LTTR or TB			-	Priority Location	
				Total Stars:	丸ᄎᄎᄎᄎ	\checkmark		
List of Strategies Considered								
		Type	Unit Cost	Unit	Quantity	Total Cost		
Reconstruct TT to Sin	gle T :	Proactive	\$400,000	Per Intersection	0	\$0		
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0		
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0		
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	1	\$2,000		
Thru-Stop to All Way Stop	ield:	Proactive	\$3,000	Per Intersection	0	\$0		
Left-Turn Lanes on Major	Road:	Proactive	\$250,000	Each	0	\$0		
	ting:	Proactive	\$15,000	Each	1	\$15,000		
Review Signs and Mar	ings:	Proactive	$\begin{gathered} \$ 0 \\ \$ 1,500 \end{gathered}$	Per Intersection Per Intersection	0	\$0		
Upgrade Signs \& Markings:		Proactive			0	\$0		
					Total Estimated Pro	st \$17,000		
Systemic Project	\checkmark							

Project Page \#:	7
Segment ID:	26.003
Date:	$3 / 31 / 2023$

Rural Intersection on MN 32

Roadway Information

Description:	MN 32 \& CSAH 26 (Front St)
County:	Clay
Area Type:	Small Town
Context Zone:	Commercial
Segment Route System:	CSAH
Segment Route No:	26
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	Present
Flasher:	None
Major ADT:	1,900
Minor ADT:	920
Total Entering ADT:	2,820

Crash Information			Total 5-year Crash History (2016-2020)	Total
	Severe	0	1	Severe Right Angle
Crash Frequency:	1	0	0.2	0
Density (per mile per yr):	0.2	0	0.2	0
Rate (per MVM):	0.2		0	

Systemic Safety Risk Factors

		Value		old	Star Assignment		
Major Approach Speed Lim	(mph):	30			-		
Cont	xt Zone:	Commercial	Commercial, In	lixed Use, Residential	\star		
Entering A	T(vpd):	2,820		O	\star		
OR Traffic Volume Cross	Product:	1,748,000		000			
Leg Confi	uration:	X			\star		
Alignment Skew(egrees):	0					
Adjace	Curve:	None		ntal,	-		
Adjacent Deve	opment:	None		Both	-		
Adjacent RR	crossing:	1			\star		
Previo	us Stop:	>5			*		
1st Major Turn Lane Con	pproach uration:	1		TB	-		
				Total Stars:	$\star \star \star \star \star$	Priority Location	\checkmark
List of Strategie	Consi						
		Type	Unit Cost	Unit	Quantity	Total Cos	
Reconstruct TT to Sin	gle T :	Proactive	\$400,000	Per Intersection	0	\$0	
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0	
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0	
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	1	\$2,000	
Thru-Stop to All Way Stop	ield:	Proactive	\$3,000	Per Intersection	0	\$0	
Left-Turn Lanes on Major	Road:	Proactive	\$250,000	Each	0	\$0	
	ting:	Proactive	\$15,000	Each	1	\$15,000	
Review Signs and Markin	ings:	Proactive	\$0	Per Intersection	0	\$0	
Upgrade Signs \& Mar	ings:	Proactive	\$1,500	Per Intersection	0	\$0	
					Total Estimated Pro	ost \$17,000	
Systemic Project	\checkmark						

Project Page \#:	8
Segment ID:	26.012
Date:	$3 / 31 / 2023$

Rural Intersection on MN 34

Roadway Information

Description:	MN $34 \&$ CSAH 31 (230th St S)
County:	Clay
Area Type:	Rural
Context Zone:	Agriculture
Segment Route System:	CSAH
Segment Route No:	31
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	None
Major ADT:	2,500
Minor ADT:	385
Total Entering ADT:	2,885

Click to View in Google Maps

Crash Information				
5 -year Crash History (2016-2020)	Sotal	Total Right Angle	Severe Right Angle	
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

Rural Intersection on US 10

Roadway Information

Description:	US 10 \& CSAH 31 (230th St)
County:	Clay
Area Type:	Small Town
Context Zone:	Mixed Use
Segment Route System:	CSAH
Segment Route No:	31
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Signal
Street Lights:	Present
Flasher:	Overhead
Major ADT:	13,300
Minor ADT:	1,450
Total Entering ADT:	14,750

Click to View in Google Maps

Crash Information				
5-year Crash History (2016-2020)			Total Right Angle	Severe Right Angle
Crash Frequency:	15	1	0	
Density (per mile per yr):	3	0.2	0.8	0
Rate (per MVM):	0.6	0	0.1	0

Systemic Safety Risk Factors

Project Page \#:	9
Segment ID:	31.004
Date:	$3 / 31 / 2023$

Rural Intersection on US 75

Roadway Information

Description:	US 75 \& CSAH 34
County:	Clay
Area Type:	Small Town
Context Zone:	Industrial
Segment Route System:	CSAH
Segment Route No:	34
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	None
Flasher:	Overhead
Major ADT:	2,050
Minor ADT:	292
Total Entering ADT:	2,342

Click to View in Google Maps

Crash Information			Total 5 -year Crash History (2016-2020)	Total
Right Angle	0	Severe Right Angle		
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

		Value	Threshold		Star Assignment			
Major Approach Speed Limit (mph): Context Zone: Entering ADT(vpd):		60			\star			
		$2,342$	Commercial, Industrial, Mixed Use, Residential		\star			
		$\geq 2,000$	\star					
OR Traffic Volume Cross Product:			598,600	$\geq 1,000,000$				
Leg Configuration:		X	X		\star			
		None	$\xrightarrow{\geq 10}$		-			
Adjacent Curve:			Vertical, Both		-			
Adjacent Development:		None	Present		-			
Adjacent RR Crossing:		None	Present		\star			
		>5			\star			
Turn Lane Configuration:		0	LTTR or TB		-	Priority Location		
				Total Stars:	丸ᄎᄎᄎᄎ		\checkmark	
List of Strategies Considered								
		Type	Unit Cost	Unit	Quantity	Total Cost		
Reconstruct TT to Sin	gle T :	Proactive	\$400,000	Per Intersection	0	\$0		
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0		
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0		
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	0	\$0		
Thru-Stop to All Way Stop	ield:	Proactive	\$3,000	Per Intersection	0	\$0		
Left-Turn Lanes on Major	Road:	Proactive	\$250,000	Each	0	\$0		
	ting:	Proactive	\$15,000	Each	1	\$15,000		
Review Signs and Mar	ings:	Proactive	$\begin{gathered} \$ 0 \\ \$ 1,500 \end{gathered}$	Per Intersection Per Intersection	0	\$0		
Upgrade Signs \& Markings:		Proactive			0	\$0		
					Total Estimated Pro	st \$15,000		
Systemic Project	\checkmark							

Project Page \#:	10
Segment ID:	34.001
Date:	$3 / 31 / 2023$

Rural Intersection on MN 34 (160th Ave S)

Roadway Information

Click to View in Google Maps

Crash Information			Total 5-year Crash History (2016-2020)	Total
	Severe	0	1	Severe Right Angle
Crash Frequency:	1	0	0.2	0
Density (per mile per yr):	0.2	0	0.2	0
Rate (per MVM):	0.2		0	

Systemic Safety Risk Factors

		Value		old	Star Assignment		
Major Approach Speed Lim	(mph):	55			-		
Cont	xt Zone:	Agriculture	Commercial, In	ixed Use, Residential			
Entering	T(vpd):	2,678		0	\star		
OR Traffic Volume Cross	Product:	1,005,700		, 000			
Leg Config	uration:	X			\star		
Alignment Skew(egrees):	0			-		
Adjace	Curve:	None		tal,	-		
Adjacent Deve	pment:	None		Both	-		
Adjacent RR	rossing:	1			\star		
Previ	us Stop:	>5			\star		
1st Major Turn Lane Con	proach uration:	1		TB	-		
				Total Stars:	$\star \star \star$	Priority Location	\checkmark
List of Strategie	Cons	ered					
		Type	Unit Cost	Unit	Quantity	Total Cos	
Reconstruct TT to Si	g T:	Proactive	\$400,000	Per Intersection	0	\$0	
Round	bout:	Proactive	\$2,500,000	Per Intersection	0	\$0	
	Turn:	Proactive	\$1,000,000	Per Intersection	0	\$0	
LED Stop	Sign:	Proactive	\$2,000-6,000	Each	0	\$0	
Thru-Stop to All Way Stop	ield:	Proactive	\$3,000	Per Intersection	0	\$0	
Left-Turn Lanes on Major	oad:	Proactive	\$250,000	Each	0	\$0	
	ting:	Proactive	\$15,000	Each	1	\$15,000	
Review Signs and Ma	ings:	Proactive	\$0	Per Intersection	0	\$0	
Upgrade Signs \& Ma	ings:	Proactive	\$1,500	Per Intersection	0	\$0	
					Total Estimated Proid	ost \$15,000	
Systemic Project	\checkmark						

Project Page \#:	39
Segment ID:	35.001
Date:	$3 / 31 / 2023$

Urban Segment Project on CSAH 3

Roadway Information

Crash Information

5-year Crash History (2016-2020)	Total	Severe Crash Count	Total Lane Departure	Severe Lane Departure
Crash Frequency:	17	0	4	4
Density (per mile per yr):	0.79	0	0.19	0
Rate (per MVM):	0.39	0	0.09	0

Systemic Safety Risk Factors						
	Value	Threshold		Star Assignment		
Speed Limit (mph):	30	≥ 50		-		
Traffic Volume (vpd):	5583	$4,000 \geq x x \leq 14,000$		*		
Access Density (access per mile):	39.96	$15 \geq x x \leq 25$		-		
Context Zone:	Residential	Commercial, Mixed Use		-		
Edgeline Striping:	Present	None		-		
Lane Width (ft):	12	10-11.5 feet		-		
Parking:	Both Sides Parallel	Present		\star		
Cross Section and Design:	2-Lane	Multi-lane		-		
Edge Risk:	2 C	3 Deficiencies		-		
Shoulder Width (ft):	0	< 3 Feet		*		
			Total Stars:	$\star \star \star$	Priority Location	\checkmark
List of Strategies Con	sidered					
	Type	Unit Cost	Unit	Quantity	Total Cos	
Divided Roadway:	Proactive	\$5,000,000	per mile	0	\$0	
Access Management:	Proactive	\$360,000	per mile	1	\$1,549,49	
Road Diet:	Proactive	\$25,000-40,000	per mile	0	\$0	
Vehicle Speed Feedback Signs:	Proactive	\$30,000	per segment	0	\$0	
Sidewalk:	Proactive	\$80,000	per mile	0	\$0	

[^18]\square

Project Page \#:	2
Segment ID:	3.002
Date:	$3 / 31 / 2023$

Urban (Vehicle) Intersection on CSAH 1 (Broadway St NW)

Roadway Information

Total Entering ADT: 6,510
Click to View in Google Maps

Crash Information				
5-year Crash History (2016	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

Urban (Vehicle) Intersection on MSAS 115 (1st Ave N)

Roadway Information

Description: MSAS 115 (1st A			
County: Clay		T	
Area Type: Urban			
Context Zone: Commercial		$1-2$	
Segment Route System: CSAH			
Segment Route No: 3		N 1St Ave	
Design Type: Traditional		$3 \times$	5
Configuration: X		N 1St Ave	
Traffic Control Device: Signal			
Street Lights: Present		\square	
Flasher: Overhead		72	
Major ADT: 10,900			
Minor ADT: 5,950			
Total Entering ADT: 16,850		Click to View	
Crash Information			
5-year Crash History (2016-2020) Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency: 15	0	10	0
Density (per mile per yr): 3	0	2	0
Rate (per MVM): 0.5	0	0.3	0

Systemic Safety Risk Factors

Urban (Vehicle) Intersection on US 10

Roadway Information

Total Entering ADT: 18,000

Crash Information

5-year Crash History (2016-2020)	Total	Total Right Angle	Severe Right Angle	
Crash Frequency:	8	0	3	0
Density (per mile per yr):	1.6	0	0.6	0
Rate (per MVM):	0.2	0	0.1	0

Systemic Safety Risk Factors

Urban (Vehicle) Intersection on CSAH 52

Roadway Information

Total Entering ADT: 5,602
Click to View in Google Maps

Crash Information				
5-year Crash History (2016-2020)	Total			
	Total	Severe	Severe Right Angle	1
Crash Frequency:	1	0	0.2	0
Density (per mile per yr):	0.2	0	0.1	0
Rate (per MVM):	0.1	0	0	

Systemic Safety Risk Factors

Urban (Vehicle) Intersection on US 75 (8th St S)

Roadway Information

Description:	US 75 (8th St S) \& MSAS 146 (50th Ave S)
County:	Clay
Area Type:	Suburban
Context Zone:	Commercial
Segment Route System:	CR
Segment Route No:	75
Design Type:	Traditional
Configuration:	X
Traffic Control Device:	Thru-Stop
Street Lights:	Present
Flasher:	None
Major ADT:	7,400
Minor ADT:	328
Total Entering ADT:	7,728

Click to View in Google Maps

Crash Information

5-year Crash History (2016-2020)	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	0	0	0	0
Density (per mile per yr):	0	0	0	0
Rate (per MVM):	0	0	0	0

Systemic Safety Risk Factors

Urban (Bike/Ped) Intersection on US 10

Roadway Information

Description: US 10 \& CSAH 3
County: Clay
Area Type: Urban
Context Zone: Commercial
Segment Route System: CSAH
Segment Route No: 3
Design Type: Traditional
Configuration: X
Traffic Control Device: Signal
Street Lights: Present
Flasher: Overhead
Major ADT: 9,100
Minor ADT: 3,950
Total Entering ADT: 13,050

Click to View in Google Maps

Crash Information

5 -year Crash History (2016-2020)	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	4	0	3	0
Density (per mile per yr):	0.8	0	0.6	0
Rate (per MVM):	0.2	0	0.1	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Traffic Control Device:	Signal	Signal	\star		
Entering ADT(vpd):	13,050	$\geq 12,000$	\star		
Adjacent Development:	None	Present	-		
Max Number of Lanes Crossed:	5	≥ 4	\star		
Presence of Sidewalk:	Some	Some, None	\star		
Pedestrian Crossing Type:	Marking	Markings	\star	Priority Location	\checkmark

Urban (Bike/Ped) Intersection on MSAS 115 (1st Ave N)

Roadway Information

Description: MSAS 115 (1st Ave N) \& CSAH 3 (11th St N) County: Clay
Area Type: Urban
Context Zone: Commercial
Segment Route System: CSAH
Segment Route No: 3
Design Type: Traditional
Configuration: X
Traffic Control Device: Signal
Street Lights: Present
Flasher: Overhead
Major ADT: 10,900
Minor ADT: 5,950
Total Entering ADT: 16,850

Click to View in Google Maps

Crash Information

5-year Crash History (2016-2020)	Total	Total Right Angle	Severe Right Angle	
Crash Frequency:	15	0	10	0
Density (per mile per yr):	3	0	2	0
Rate (per MVM):	0.5	0	0.3	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Traffic Control Device:	Signal	Signal	\star		
Entering ADT(vpd):	16,850	$\geq 12,000$	\star		
Adjacent Development:	None	Present	-		
Max Number of Lanes Crossed:	5	≥ 4	\star		
Presence of Sidewalk:	Both Sides	Some, None	-		
Pedestrian Crossing Type:	Marking	Markings	\star	Priority Location	\checkmark

List of Strategies Considered					
	Type	Unit Cost	Unit	Quantity	Total Cost
Mini Roundabout:	Proactive	\$500,000	Each	0	\$0
Median Refuge Island:	Proactive	\$25,000-50,000	Each	0	\$0
RRFB:	Proactive	\$60,000	Per Intersection	0	\$0
RRFB w/ Refuge Island:	Proactive	\$75,000	Each	0	\$0
Pedestrian Hybrid Beacon:	Proactive	\$120,000	Per Intersection	0	\$0
No Right Turn on Red Sign					
(Static or Black out):	Proactive	\$2,400	Per Intersection	0	\$0
Curb Extension:	Proactive	\$10,000	Per Intersection	0	\$0
Leading Pedestrian Interval:	Proactive	\$1,000	Per Intersection	1	\$1,000
Pedestrian Countdown Timers:	Proactive	\$12,000	Each	0	\$0

Upgrade Signal Hardware and Review and Revise Signal Timing and Operations:

Proactive	$\$ 5,000$	Each	1
	Total Estimated Project Cost	$\$ 6,000$	

\square

Project Page \#:	3
Segment ID:	3.002
Date:	$3 / 30 / 2023$

Urban (Bike/Ped) Intersection on CSAH 3 (11th St N)

Roadway Information

Description: CSAH 3 (11th St N) \& MSAS 129 (15th Ave N) County: Clay
Area Type: Urban
Context Zone: Recreational
Segment Route System: CSAH
Segment Route No: 3
Design Type: Traditional
Configuration: X
Traffic Control Device: All-Way Stop
Street Lights: Present
Flasher: None
Major ADT: 4,100
Minor ADT: 8,550
Total Entering ADT: 12,650

Click to View in Google Maps

Crash Information

5 -year Crash History (2016-2020)	Total	Severe	Total Right Angle	Severe Right Angle
Crash Frequency:	5	0	3	0
Density (per mile per yr):	1	0	0.6	0
Rate (per MVM):	0.2	0	0.1	0

Systemic Safety Risk Factors

Urban (Bike/Ped) Intersection on CSAH 7 (40th ST S)

Roadway Information

Description: CSAH 7 (40th ST S) \& MSAS 138 (40th Ave S) County: Clay
Area Type: Suburban
Context Zone: Residential
Segment Route System: CSAH
Segment Route No: 7
Design Type: Traditional
Configuration: X
Traffic Control Device: Thru-Stop
Street Lights: Present
Flasher: None
Major ADT: 1,950
Minor ADT: 460

Total Entering ADT: 2,410
Click to View in Google Maps

Crash Information

5-year Crash History (2016-2020)	Total	Total Right Angle	Severe Right Angle	
Crash Frequency:	3	0	2	0
Density (per mile per yr):	0.6	0	0.4	0
Rate (per MVM):	0.7	0	0.5	0

Systemic Safety Risk Factors

Urban (Bike/Ped) Intersection on US 10 (Center Ave W)

Roadway Information

Description: US 10 (Center Ave W) \& CSAH 45 (Main St S)
County: Clay
Area Type: Suburban
Context Zone: Residential
Segment Route System: CSAH
Segment Route No: 45
Design Type: Traditional
Configuration: X
Traffic Control Device: Signal
Street Lights: Present
Flasher: None
Major ADT: 13,400
Minor ADT: 442
Total Entering ADT: 13,842

Click to View in Google Maps

Crash Information

5-year Crash History (2016-2020)	Total	Total Right Angle	Severe Right Angle	
Crash Frequency:	6	0	2	0
Density (per mile per yr):	1.2	0	0.4	0
Rate (per MVM):	0.2	0	0.1	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Traffic Control Device:	Signal	Signal	\star		
Entering ADT(vpd):	13,842	$\geq 12,000$	\star		
Adjacent Development:	None	Present	-		
Max Number of Lanes Crossed:	4	≥ 4	\star		
Presence of Sidewalk:	All	Some, None	-		
Pedestrian Crossing Type:	Marking	Markings	\star	Priority Location	\checkmark

Urban (Bike/Ped) Intersection on US 10 (Center AVE E)

Roadway Information

Description: US 10 (Center AVE E) \& CSAH 45 (7th St SE)
County: Clay
Area Type: Suburban
Context Zone: Residential
Segment Route System: CSAH
Segment Route No: 45
Design Type: Traditional
Configuration: X
Traffic Control Device: Thru-Stop
Street Lights: Present
Flasher: None
Major ADT: 8,000
Minor ADT: 245

Total Entering ADT: 8,245
Click to View in Google Maps

Crash Information			Total 5-year Crash History (2016-2020)	Total
Right Angle				

Systemic Safety Risk Factors

Urban (Bike/Ped) Intersection on MSAS 128 (30th Ave S)

Roadway Information

Description: MSAS 128 (30th Ave S) \& CSAH 52
County: Clay
Area Type: Suburban
Context Zone: Residential
Segment Route System: CSAH
Segment Route No: 52
Design Type: Traditional
Configuration: X
Traffic Control Device: Signal
Street Lights: Present
Flasher: Overhead
Major ADT: 5,850
Minor ADT: 6,000

Total Entering ADT: 11,850
Click to View in Google Maps

Crash Information

$5-$-year Crash History (2016-2020)	Total	Total Right Angle	Severe Right Angle	
Crash Frequency:	7	0	1	0
Density (per mile per yr):	1.4	0	0.2	0
Rate (per MVM):	0.3	0	0	0

Systemic Safety Risk Factors

	Value	Threshold	Star Assignment		
Traffic Control Device:	Signal	Signal	\star		
Entering ADT(vpd):	11,850	$\geq 12,000$	-		
Adjacent Development:	None	Present	-		
Max Number of Lanes Crossed:	6	≥ 4	\star		
Presence of Sidewalk:	Some	Some, None	\star		
Pedestrian Crossing Type:	Marking	Markings	\star	Priority Location	\checkmark

List of Strategies Considered

[^0]: 1 Figure 5-1 indicates the percentage of crashes influenced by each factor alone represented by non-overlapping sections (driver behavior is yellow, roadway is green, and vehicle is blue) while those sections that do overlap with other crash factors indicate the complex occurrence where multiple factors contribute to a crash. The percentages in the parentheses indicate the total influence a crash factor has to all crashes, whether exclusive or contributing with other factors.

[^1]: ${ }^{1}$ List taken from
 http://www.minnesotatzd.org/whatistzd/mntzd/contact/

[^2]: Systemic Project $\quad \sqrt{ }$

[^3]: Systemic Project $\quad \sqrt{ }$

[^4]: Systemic Project $\quad \sqrt{ }$

[^5]: Systemic Project $\quad \sqrt{ }$

[^6]: Systemic Project $\quad \sqrt{ }$

[^7]: Systemic Project $\quad \sqrt{ }$

[^8]: Systemic Project $\quad \sqrt{ }$

[^9]: Systemic Project $\quad \sqrt{ }$

[^10]: Systemic Project $\quad \checkmark$

[^11]: Systemic Project $\sqrt{ }$

[^12]: Systemic Project $\quad \sqrt{ }$

[^13]: | Systemic Project | $\sqrt{ }$ |
 | :--- | :--- |

[^14]: Systemic Project $\sqrt{ }$

[^15]: Systemic Project $\quad \checkmark$

[^16]: Systemic Project $\sqrt{ }$

[^17]: Systemic Project $\quad \checkmark$

[^18]: Systemic Project

