

University Drive & 10th Street Corridor Study

13th Avenue S to 19th Avenue N Fargo, ND

Executive Report

The preparation of this document was funded in part by the United States Department of Transportation with funding administered through the North Dakota Department of Transportation, the Federal Highway Administration, and the Federal Transit Administration. Additional funding was provided through local contributions from the City of Fargo. The United States Government and the States of North Dakota and Minnesota assume no liability for the contents or use thereof.

This document does not constitute a standard, specification, or regulation. The United States Government, the States of North Dakota and Minnesota, and the Fargo-Moorhead Metropolitan Council of Governments do not endorse products or manufacturers. Trade or manufacturers' names may appear herein only because they are considered essential to the objective of this document.

Prepared for:
Fargo-Moorhead Metropolitan Council of Governments
City of Fargo

Prepared By: Bolton & Menk, Inc.

September 2025

Background and Intent

The University Drive and 10th Street
Corridor Study (the Study) is an investigative
transportation study on University Drive and
10th Street in Fargo, North Dakota. The study
extends from 13th Avenue S to 19th Avenue N,
where the two roadways function in tandem as
a one-way pair. These roadways are a significant
north-south corridor that provide access to key
destinations such as downtown, North Dakota
State University (NDSU), the FARGODOME,
Sanford Health Athletic Complex, multiple core
neighborhoods, several schools, and Downtown.

The University Drive and 10th Street Corridor has long served a variety of uses and priorities. After being designated as State Route 81, the streets were converted into a one-way pair in 1969 to improve traffic flow. Today, recent planning efforts—including the *Downtown Fargo In Focus Plan, Regional Transportation Plan*, and *Core Neighborhoods Plan*—identify these streets

as vital corridors for moving people to and through the downtown area.

Through these previous efforts, several stakeholder groups expressed a desire to enhance comfort and safety for alternative modes of travel (walking, biking, and transit), as well as to stimulate economic development along the University Drive corridor.

The two corridors will be studied to identify roadway alternatives and livability characteristics that will addresses issues raised by the public and stakeholder groups. This allowed for a methodical approach centered on extensive public involvement and detailed scenario and alternatives analysis.

The study was divided into two phases. The first phase, titled "Establish Corridor Vision," was completed in 2022–2023. The goal was to understand the long-term vision for the corridor in terms of roadway configuration and design.

Figure 1: The Study Corridor and Surrounding Neighborhoods

After the completion of phase one, the study was After the completion of phase one, city leadership collaboration helped to align the study's scope to better reflect goals and insights from the public, impacted residents and business owners along the corridor.

The second phase, "Alternatives and Implementation," was completed in 2024. This phase aimed to identify phased improvements and implementation strategies to address the issues identified in phase one and collectively work towards the established corridor vision.

Frequently Asked Question: Was this study focused exclusively on how to convert the oneway pairs to two-way streets?

Answer: The intent of the study was investigatory in nature, meaning the first goal was to determine if roadway users wanted to see substantial changes, if any at all. Next, the team would analyze the technical data to understand how an alternative would fit. The findings from the feasibility analysis are detailed below.

Figure 2: Red River Market Pop-Up

Understanding the Needs

The methodical yet flexible nature of the study process enabled the team to adopt an intensive stakeholder engagement approach and adjust the study focus to align with public input and identified concerns. The initial engagement included the following activities:

- Postcard mailers with project information and an invitation to a survey mailed to 6,435 households in surrounding neighborhoods.
- Public survey hosted on SurveyMonkey with 395 responses. Included in the survey were a series of open comment prompts, to which survey respondents provided over 1,701 short-answer responses.
- Digital collaborative map hosted on the MetroCOG project site, which invited visitors to add concerns and ideas tied to geographic points (also with the ability to reply to other comments), with 101 comments.
- Project-dedicated phone (text and call) and email channels were established, which received several dozen messages.
- One-on-one interviews with 11 selected stakeholders at the request of the SRC.
- Social media posts on Nextdoor, Facebook, Instagram, and Twitter informing the public of ways to get engaged with the project.
- Three 1-hour virtual focus groups for North, Downtown, and South neighborhood areas of the corridor. These events received 33 RSVPs and 19 attendees.
- 3 days of "door knocking" along the corridor during July to distribute project information and engage in conversations with residents, employees, and business owners. The project team initiated contact with every single property fronting or immediately adjacent to the Study Area within the study area. This included over 600 residences, and 60 businesses visited.

The following is a summary of the key issues as identified by the public and detailed using the technical findings in the study:

Maintaining Efficient Corridor Traffic Flow – This was the most frequently mentioned comment

frequently mentioned comment across surveys, interviews, and focus groups. There was

significant concern about converting the corridor to two-way traffic flow. The corridor is part of the US 81 State Truck Route, and when considered together, the pair carries more than 27,000 vehicles per day at its peak—making it one of the most heavily trafficked corridors in the region.

Regulating Excess Traffic Speeds

 This was the most frequent comment from adjacent property owners and neighborhood

associations. A review indicated that during peak hours, traffic consistently flowed at speeds above 30 MPH. However, it was late at night when the percentage of vehicles traveling over 40 MPH typically ranged from 6% to 12%. These "drag racing" events left a lasting impression on nearby property owners.

Improving Pedestrian Crossings

 Requests for specific crossing enhancements were noted along both corridors. University Drive and

10th Street are among the most active corridors in the region for diverse travel modes, with approximately 3,600 students living within a half-mile, 1,800 bicycles present on the NDSU campus, and University Drive serving as the most active transit corridor in the region.

Providing Alternative Bicycle Routes

- It was common to hear that locals felt uncomfortable using the bike lanes on the northernmost segments

of University Drive and 10th Street. The two major rail crossings all but require bicycle traffic to return to these corridors, even if more desirable adjacent routes are available.

Reducing the Potential for Vehicle Crashes – Another common theme was overall vehicle safety. In addition to concerns about traffic speeds, many regular roadway users noted numerous blind intersections along the corridor, where trees, utility poles, or buildings obstruct views of oncoming traffic.

Maintaining Tree Cover and Improving Aesthetics – Comments about the corridor's visual appeal came in various forms. Many expressed concern about potential

widening projects that could impact the tree canopy, which contributes to the corridor's character and provides shade for pedestrians. Others were interested in enhancing the sense of place to encourage (re)development along the corridor.

Frequently Asked Question: Can't we reduce the speeds limits, increase enforcement, and elevate the fines to solve the speeding?

Answer: Drivers are already driving in excess of the speed limit along these corridors and many others across the region. While enhanced enforcement is a part of any good speed deterrent plan, it cannot be the only solution, as local law enforcement has a wide array of critical responsibilities. In addition, increasings fines is a complex process that can have longer than anticipated timelines.

Figure 3: Existing Conditions Feedback on the Central Segment

Figure 4: Existing Conditions Feedback on the North Segment

Conversion Feasibility Assessment

After conversations with the public, it became clear that the primary question on most stakeholders' minds was whether the corridor would be converted to two-way traffic. While the majority of those engaged throughout this study opposed the idea, there was feedback received that the conversion could be used as a means to slow traffic. During these interactions, engaged individuals agreed that their main focus of this study was to address and resolve the perception of excessive speeding. Despite differing views, all parties involved agreed that they wanted this study to address and resolve the long-standing uncertainty surrounding the issue.

The study team evaluated three two-way conversion scenarios using the following criteria:

- Safety Focused on pedestrian and bicycle crash survivability, crossing exposure, and the potential for vehicle crashes.
- Balance Assessed the corridor's ability to effectively serve all modes of travel, including vehicles, pedestrians, bicycles, transit, and trucks.
- Mobility Examined traffic performance during peak hours, mid-day periods, and special events.
- Impacts Considered both direct impacts (to trees, curbs, utilities, traffic signals, and signage) and indirect impacts (such as cost and the potential for reinvestment through improved corridor conditions).

Figure 5: Minimum Impact Conversion



Figure 6: Maximum Benefit Conversion

Figure 7: Downtown Only Conversion

Early comments received by the project team expressed strong opposition to the potential conversion of the corridor, largely due to the critical connectivity that University Drive and 10th Street provide for the city. Residents living directly along the corridor were primarily concerned with preserving street trees and maintaining the corridor's aesthetic character. In contrast, those in favor of the conversion were mostly interested in making the corridor quieter, slower, and more accommodating to multimodal transportation within their neighborhoods.

The corridor-wide conversion did not align with community member priorities in several key ways:

Without widening the corridor,
University Drive and 10th Street
would experience significant

gridlock, increasing travel times by 8 to 20 minutes. This would worsen conditions for those relying on the corridor to access Downtown,

NDSU, and nearby neighborhoods.

In the no-widening scenario, up to 50% of traffic would be diverted to

local neighborhood streets, increasing noise and congestion in those areas.

A widening project would impact approximately 125 trees and 175 signal/light poles, and would be prohibitively expensive—contradicting the preferences of residents along the corridor.

For those supporting the conversion to improve multimodal access, the widening scenario would increase crossing distances. In both scenarios, the potential for conflicts between

vehicles and non-motorized users would rise. However, vehicle speeds would significantly decrease, reducing the likelihood of severe or fatal crashes.

None of the conversion scenarios made biking or transit more viable or improved transit efficiency. In some cases, conditions for these modes worsened.

All scenarios showed a substantial increase in vehicle crash potential. The number of blind intersections and conflict

points more than doubled.

The results of the conversion analysis were shared with the public at an open house, supported by a broad marketing campaign. Findings were also presented individually to each City Commissioner and formally at a City Commission meeting.

The majority of public sentiment favored eliminating the corridor-wide two-way conversion concepts. However, there was interest in further studying a downtown-only conversion, as this segment features a widened three-lane cross-section. This configuration could support two-way traffic while maintaining efficient flow to key destinations and minimizing major roadway impacts.

On August 7, 2023, the City Commission agreed with this approach, paving the way for Phase II of the project.

Frequently Asked Question: The two-way conversion of the previous one-way pair on 1st Avenue and NP was very successful. Why wouldn't this improvement strategy work similarly?

Answer: These two individual one-way pairs differ significantly across key aspects of the transportation system. First, NP and 1st had nearly twice as much right-of-way available, minimizing costs and overall impacts to properties and trees when converted. Secondarily, the 1st/NP pair was 1/3 as long in length with access to fewer destinations and about 1/3 as much traffic as the University Drive and 10th Street.

Improvement and Implementation Options

Phase II focused on identifying potential shortand long-term improvement strategies through both technical analysis and public engagement. The public engagement process included the following activities:

- Marketing Approach: Traditional outreach methods included social media posts, website updates, mailers sent to more than 4,300 properties along the corridor, flyers distributed throughout downtown, and an e-blast to individuals who had participated in earlier phases and provided their contact information. More involved strategies included chloroplast road signs along the corridor, digital billboards, and video updates. Additionally, innovative tools such as virtual interactive renderings of proposed downtown improvements and various online surveys were developed.
- strategy was multi-faceted and took place over a busy week of activities. Events included a formal public open house, a stakeholder focus group (with representatives from the FARGODOME, NDSU, and others), a business focus group organized by the Downtown Community Partnership, a Strong Towns focus group, and two pop-up meetings—one at the Red River Market and another at an NDSU football tailgating event.

In total, more than 400 participants provided feedback during this phase of the project. Both online and in-person activities sought input on the proposed alternatives and the prioritization of improvements. While the improvement plan outlined below is supported by the majority of participants, not all were in agreement. Some community members continued to advocate for a full two-way conversion, while others believed the only effective way to address speeding is through significantly increased enforcement and higher fines.

Implement Safety Improvements

To address safety concerns, the assessment recommends implementing various safety improvements along the corridors. These include enhanced pedestrian crossings, improved signage, and traffic calming measures to reduce vehicle speeds. A critical element of this is using a package of solutions in an attempt to control traffic speeds. This included a series of signal retiming efforts, signage, and a redesign of wide portions of the study area.

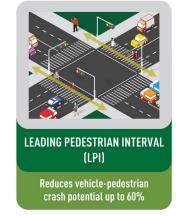


Figure 8: Enhanced Rest-in-Red Signal Timing

Figure 9: Examples of Recommended Safety Improvements

Enhance Multimodal Accessibility

The assessment recommends enhancing multimodal accessibility by adding dedicated bike lanes, improving public transit facilities, and strengthening pedestrian connectivity. The proposed improvements include a parallel bike route along 11th Street and enhanced pedestrian crossings to reduce conflicts with vehicles. This vision is anchored by signature reconfiguration alternatives in the downtown area, which aim to support alternative modes of travel while prioritizing aesthetics and livability.

Several concepts were developed that eliminate one through lane to achieve different benefits. One concept widens the sidewalks to accommodate bicycle travel, aesthetic enhancements, and bus turnouts.

Another replaces it with a raised one-way or two-way bike facility, often referred to as a cycle-track. A third concept repurposes the lane for opposing traffic flow.

Funding and Phasing Plan

Phase II concludes with a comprehensive funding and phasing plan to support the successful implementation of the proposed improvements. This includes identifying and pursuing a variety of funding sources, as well as prioritizing projects based on their impact and feasibility. The Study Implementation Plan outlines the necessary steps to translate the study's vision into actionable projects. It emphasizes the importance of strategic prioritization and the development of effective funding strategies to ensure timely enhancements to the transportation system.

A range of federal, state, and local funding sources are available, with the City of Fargo

leading efforts to secure financial support.
Statewide and federal programs—such as the Highway Safety Improvement Program,
Transportation Alternatives, and Flex Funding—are critical for advancing small-scale, high-impact solutions like traffic calming measures and improved pedestrian crossings. However, larger federal grants will be necessary to implement the more costly downtown reconfiguration concepts.

Frequently Asked Question: When will the improvements identified in this study occur?

Answer: No funding is set aside to advance any of the improvements outlined in this plan. You may see some of the smaller-scale improvement packages, such as signal improvements in the next five years if additional funding is secured. More substantial projects, like the vision set forth through downtown, may occur well beyond a 5-year timeframe.



Figure 10: Downtown
Reconfiguration
Alternatives and
Scorecard Rating
(See Downtown
Reconfiguration Section)

METROCOG