# Intersection Control Evaluation (ICE) 

U.S. Highway (Hwy) 10 and U.S. Hwy 75 (North)

Moorhead, Minnesota
State Project (S.P.): TBD

## DRAFT

Minnesota Department of Transportation (MnDOT) - District 4

April 2020

SRF No. 11649

## Intersection Control Evaluation (ICE)

## U.S. Highway (Hwy) 10 and U.S. Hwy 75

State Project (S.P.): TBD
Proposed Letting Date: TBD

## Report Certification:

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

| Leif A. Garnass | $\frac{47153}{\text { Reg. No. }}$ |
| :--- | :--- |
| Print Name |  |
| Signature | Date |

## Approved By:

MnDOT
Date
District 4 Traffic Engineer
MnDOT

Date
District 4 State Aid Engineer

City of Moorhead
Date
Traffic Engineer

## Table of Contents

Introduction ..... 1
Intersection Characteristics ..... 3
Existing Conditions ..... 3
Crash History ..... 3
Traffic Volumes ..... 5
Existing Volumes ..... 5
Future Volumes ..... 5
Alternatives ..... 8
Analysis of Alternatives ..... 13
Warrants Analysis ..... 13
Traffic Operations Analysis ..... 14
Crash Analysis ..... 15
Alternatives Assessment. ..... 17
Right of Way Considerations ..... 17
Corridor Functionality Considerations ..... 17
Pedestrian and Bicycle Considerations ..... 17
Conclusions and Recommendations ..... 18
Appendices ..... 19

## Introduction

The Fargo-Moorhead Council of Governments (Metro COG) and its partners, the Minnesota Department of Transportation (MnDOT), City of Moorhead, Downtown Moorhead, Inc. and MATBUS completed a study of the U.S. Hwy 10 and U.S. Hwy 75 corridors in Moorhead. The purpose of the study was to develop context-sensitive solutions for the corridors that balance the needs of the City of Moorhead with area stakeholders and users, and ultimately recommend a vision for both corridors to inform the planned reconstruction project in 2025-2026. This report includes the intersection control evaluation results for the U.S. Hwy 10 and U.S. Hwy 75 (North) intersection in the City of Moorhead, Minnesota (see Figure 1). The goal of this evaluation was to identify intersection control for the study intersection which would be constructed in Phase 2 of the overall reconstruction project; therefore, the assumed analysis year is 2027.

The MnDOT Intersection Control Evaluation (ICE) is a process that identifies the most appropriate intersection control type through a comprehensive analysis and documentation of the technical (safety, operational, other) and political issues of viable alternatives. The goal of ICE is to select the optimal control for an intersection based on an objective analysis for the existing conditions and future needs. This ICE report was completed to inform the larger corridor study completed (documented separately). The study was guided by the following overarching goals in which the recommended vision needs to:

1. Provide roadways that fit land use (i.e., appropriate access and design).
2. Accommodate appropriate users (i.e., complete streets).
3. Create an environment to stimulate growth.
4. Provide flexibility for near- and long-term transportation needs.
5. Improve "Gateway" feel for the U.S. Hwy 10 and U.S. Hwy 75 corridors.
6. Develop and executes a project that meets the needs for 30+ years.

Defining the purpose and need explains why an agency or agencies are undertaking a project and the main objectives of the project. The "need" describes the transportation deficiencies or problems to be addressed by the project. The "purpose" is a broad statement of the primary intended transportation result and other related objectives to be achieved by the project. The purpose and need act as measuring sticks for the project alternatives, helping determine to what extent each alternative meets the project's needs. Alternatives that do not address the transportation needs of the project and do not meet the purpose of the project are not studied further. Based on the purpose and need documented in the corridor study, the need for improvements at this study intersection is a result of poor pavement conditions, long side-street delays at adjacent intersections, and crash history along Center Avenue from 21st Street to 34th Street.

Detailed warrants, operations and crash analyses, in combination with engineering judgement, were used to determine recommendations for this ICE.


## Intersection Characteristics

## Existing Conditions

The U.S. Hwy 10 and U.S. Hwy 75 (North) intersection is a three-way intersection with traffic signal control; however, the eastbound U.S. Hwy 10 movement is not signalized but the existing southbound-to-eastbound left-turn movement is required to "yield" prior to entering U.S. Hwy 10. U.S. Hwy 10 is a four-lane divided highway with a posted speed limit of 45 mph and is functionally classified as a Principal Arterial. U.S. Hwy 75 is a four-lane divided roadway with a posted speed limit of 45 mph and functionally classified as a Minor Arterial. The land adjacent to the intersection includes primarily commercial properties with residential areas located within a half mile of the intersection. Current intersection geometrics are shown in Figure 2.

## Crash History

Historical crash data were obtained from MnDOT for a five-year period from 2013 through 2017. Detailed crash data is included in Appendix A. Fourteen crashes were reported during the analysis period resulting in a crash rate of 0.32 crashes per million entering vehicles, which is below the statewide average of 0.70 for a signalized intersection, as well as below the critical crash rate of 1.03. 57 percent of the crashes reported were rear end crashes. A summary of the data is shown below:

- 11 - Property Damage Only (PDO) Crashes
- 2 - Possible Injury (C) Crashes
- 1 - Suspected Minor Injury Crash
- 0 - Suspected Serious Injury Crash
- 0 - Fatality (K) Crash
- Observed Crash Rate -0.32 (crashes/million entering vehicles)
- Critical Crash Rate -1.03 (crashes/million entering vehicles)

While the crash history does not indicate a safety concern, input from the community and stakeholders noted this intersection as "confusing" with the wide median an how it's controlled since there is no acceleration lane for drivers making the southbound-to-eastbound left-turn movement, which has to yield in the median to U.S. Hwy 10 traffic.


## Existing Conditions

Intersection Control Evaluation

## Traffic Volumes

## Existing Volumes

During the data collection efforts (September 2018 thru October 2018) there was ongoing construction in the study area that impacted travel patterns and traffic volumes at the study intersection. Construction included:

- 12th Avenue/15th Avenue bridge closed between mid-September and early October 2018
- US 10 (Main Avenue) between 7th Street/8th Street closed early to mid-October 2018
- SE Main Avenue/20th Street/21st Street intersection closed mid-October 2018 to 2021
- Detour route includes US 10/34th Street/12th Avenue/US 75

Peak periods intersection turning movement counts were collected at the study intersection. The traffic count data was collected from 7:00 to 9:00 a.m. and from 4:00 to 6:00 p.m. All modes collected were grouped by pedestrians, bicyclists, passenger vehicles, transit vehicles/trucks.

The year 2018 traffic count data was supplemented by recently collected traffic volumes (year 2015/2016) provided by the City of Moorhead. Using a combination of the year 2018 and recently collected traffic volumes, an existing a.m. and p.m. peak hour volume set was developed. The peak hour turning movement volumes are summarized in Figure 3.

## Future Volumes

The Advanced Traffic Analysis Center (ATAC) provided the travel demand model that was used to determine the expected daily traffic forecast volumes along the U.S. Hwy 10 and U.S. Hwy 75 corridors. As part of this study, the year 2045 socio-economic (SE) data in the traffic analysis zones (TAZs) near downtown Moorhead were reviewed and updated based on input provided by the Metro COG and the City of Moorhead to be consistent with current development expectations in the downtown area. Additionally, the external growth rate was modified in the Travel Demand Model from 2.5 percent to 0.25 percent. A growth rate of 0.25 percent is more consistent with the historical traffic volume growth along roadways external to the Fargo-Moorhead area. Results of this analysis indicate that an annual growth rate of approximately one (1) percent is expected; however, historical traffic volumes in Moorhead (see Figure 4) have remained relatively unchanged and data reviewed in downtown Fargo suggests that a mode shift has occurred. Therefore, for this study the 2045 analysis assuming a one (1) percent growth rate was used to assess the risk of the implementation of the alternatives if assumptions were to change. Based on historical data in both downtown Moorhead and Fargo, we do not expect a growth rate of one (1) percent to occur.

Results of this analysis indicate that an annual growth rate of approximately one (1) percent is expected. Projected Opening Day Year 2027 and Projected Design Year 2045 volumes are shown in Figure 3. Further details are included in Appendix B.

Existing 2018 Traffic Volumes
XX = AM Peak Hour
$(X X)=$ PM Peak Hour


Opening Day Year 2027 Traffic Volumes
XX = AM Peak Hour
(XX) = PM Peak Hour


Year 2045 Traffic Volumes
XX = AM Peak Hour
(XX) = PM Peak Hour


Figure 4. Historical Traffic Volumes


## Alternatives

With a solid understanding of the existing issues and deficiencies (including the lack of an eastbound acceleration lane for the southbound-to-eastbound left-turn movement), alternatives were developed. Federal Highway Administration (FHWA) has developed a planning-level tool called CAP-X, which can be used to screen potential alternatives based on traffic volumes. The metric used is the volume-to-capacity ( $\mathrm{V} / \mathrm{C}$ ) ratio, which indicates how well the alternative can handle the traffic levels. A V/C approaching or greater than 1.0 indicates the alternative is not sufficient from a traffic perspective. Intersection and corridor constraints (i.e., property impacts) also need to be considered to ensure corridor context is considered when recommending alternatives.

The vision identified for this corridor is to apply access management and reduce the median width to a more standard width to connect the urban character west of the intersection with suburban character east. Further, the analysis for this ICE assumes recommendations included in the corridor study, including: 1) removing the split phasing at 1st Avenue/21st Street; 2) restricting access at the 24th Street and 26th Street intersections to right-in/right-out; 3) restricting access at the 30th Street intersection to a 3/4 access; and 4) signalizing the 28th Street and 32nd Street intersections. Reducing the median width impacts the existing commercial vehicle site in the median. Potential options for a future inspection site are presented later in this report.

Based on existing (2018) p.m. peak hour volumes, Table 1 summarizes the alternatives considered and justification as to why or why not alternatives were carried forward in this ICE for further evaluation and consideration.

Table 1. Alternatives Considered

| Alternative | V/C | Carried <br> Forward? | Justification |
| :--- | :---: | :---: | :---: |
| Unsignalized | $>1.0$ | No | Insufficent capacity |
| Traffic Signal Control | $<0.5$ | Yes | Sufficent capacity, consisent with vision |
| Continuous Green T | $<0.1$ | Yes | Best capacity, consistent with vision |
| Quadrant Roadway | $<0.8$ | No | Not consistent with vision |
| Displaced Left-turns | $<0.5$ | No | Not consistent with vision |
| Signalized RCUT | $<0.5$ | No | Not consistent with vision |
| Median U-Turn | $<0.8$ | No | Not consistent with vision |
| Single-lane Roundabout | $>1.0$ | No | Insufficent capacity |
| Multi-lane Roundabout | $<0.8$ | Yes | Sufficent capacity, consisent with vision |

Lane configurations for the continuous green T-intersection, traffic signal control and multi-lane roundabout alternatives were developed to accommodate projected traffic volumes. The assumed lane configurations for the alternatives are shown in Table 2. A concept sketch for the continuous green T, traffic signal control, and multi-lane roundabout is shown in Figures 5-7. While this ICE refers to the alternative as a "multi-lane" roundabout, the southbound approach only needs to be a single-lane approach, but this would require additional reconstruction to the north of the intersection.

Table 2. Future Intersection Lane Configurations

| Approach | Existing Continuous <br> Green T | Traffic Signal Control | Multi-lane <br> Roundabout |
| :--- | :---: | :---: | :---: |
| Eastbound <br> U.S. Hwy 10 |  |  |  |

* Note: Dual left-turn lane is not needed from a capacity perspective - it's included because of the geometry/lane continuity of the closely spaced intersection with 1st Avenue/21st Street to the west, which requires dual-left turns for the westbound left-turn.


Intersection Control Evaluation



Concept Layout for Multi-Lane Roundabout
Intersection Control Evaluation
U.S. Hwy 10 at U.S. Hwy 75 (North)

Moorhead, Minnesota

## Analysis of Alternatives

## Warrants Analysis

The December 2019 Minnesota Manual on Uniform Traffic Control Devices (MnMUTCD) provides guidance on when it may appropriate to use all-way stop or traffic signal control at an intersection. This guidance is provided in the form of "warrants", or criteria, and engineering analysis of the intersection's design factors, to determine when all-way stop or traffic signal control may be justified. All-way stop or traffic signal control should not be installed at an intersection unless a MnMUTCD warrant is met but meeting a warrant does not itself require the installation of a control. The control type also needs an engineering analysis of the intersection's design for it to be justified. Under the MnDOT ICE process, roundabouts are warranted if traffic volumes meet the warrant requirements for either all-way stop or traffic signal control.

For this ICE, analysis of signal Warrants 1-3 was conducted for Opening Day Year 2027 and Design Year 2045 volumes. The lane geometry and approach speeds assumed for the warrants analysis are shown in Table 2.

Table 3. Warrants Analysis Assumptions

| Approach | Geometry | Speed <br> Limit |
| :--- | :--- | :---: |
| Eastbound U.S. Hwy 10 | Two or more approach lanes | 45 mph |
| Westbound U.S. Hwy 10 | Two or more approach lanes | 45 mph |
| Southbound U.S. Hwy 75 | One approach lane | 45 mph |

For the analysis, right-turn volumes on the minor street approach were excluded because this movement has an exclusive right-turn lane so these turns can be easily made and would not benefit from the addition of a signal. Also, the 70 percent traffic volume factor was used for the warrants analysis as proposed conditions met necessary the criteria specified within the MnMUTCD (i.e., mainline speed limit exceeds 40 mph . Table 4 provides a summary of the warrants analysis results and the detailed volume-based results are included in Appendix C.

Table 4. Warrant Analysis Summary

| MnMUTCD Signal Warrant | Hours <br> Required |  | Opening Day <br> Year 2027 Volumes |  | Year 2040 Volumes |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hours <br> Met | Warrant <br> Met? | Hours <br> Met | Warrant <br> Met? |  |  |
| Warrant 1A: Minimum Vehicular Volume | 8 | 0 | No | 1 | No |  |
| Warrant 1B: Interruption of Continuous Traffic | 8 | 8 | Yes | 10 | Yes |  |
| Warrant 1C: Combination of Warrants | 8 | 2 | No | 4 | No |  |
| Warrant 2: Four-Hour Volume | 4 | 7 | Yes | 9 | Yes |  |
| Warrant 3B: Peak Hour Volume | 1 | 3 | Yes | 6 | Yes |  |
| Warrants 4-9 |  |  | Not Evaluated |  |  |  |

The results of the analysis indicate that the intersection meets MnMUTCD signal warrants 1B, 2, and 3B under both Year 2027 and Year 2045 volume conditions. For traffic signal installation, MnDOT typically requires Warrant 1 to be met, which requires 8 -hours of combined major approach volumes and the maximum minor approach volume to meet MnMUTCD thresholds. This means if either Warrant 1A or 1B are met, Warrant 1 itself is considered met.

## Traffic Operations Analysis

The traffic operations analysis identified a Level of Service (LOS) which indicates how well an intersection is operating based on average delay per vehicle. Delay is calculated based on procedures outlined in the Highway Capacity Manual (HCM). Intersections are given a ranking from LOS A to LOS F. LOS A indicates the best traffic operation and LOS F indicates an intersection where demand exceeds capacity. LOS A through LOS D are considered acceptable because the intersection would be operating under capacity.

Operational analysis of the continuous green T-intersection alternative was performed using PTV VISSIM (Version 11.00-02). VISSIM can calculate various measures of effectiveness such as control delay, queuing, and total travel time impacts. Operational analysis of the traffic signal control alternative was performed using methods outlined in the 2010 edition of the HCM using Synchro/SimTraffic Version 9.1. Synchro/SimTraffic can calculate various measures of effectiveness such as control delay, queuing, and total travel time impacts. SimTraffic results are reported for the analysis. Operational analysis of the roundabout alternative was performed using RODEL software. RODEL can calculate various measures of effectiveness such as delay and queuing.

Results of the traffic operations analysis indicate that all alternatives would perform at acceptable levels of service under Year 2027 volumes and proposed lane configurations. Table 5 provides a summary of the Year 2027 traffic operations analysis. The Year 2027 detailed results are included in Appendix D.

Table 5. Opening Day Year 2027 Traffic Operations Analysis Results

| Alternative | AM Peak Hour |  | PM Peak Hour |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Overall <br> Delay | LOS | Overall <br> Delay | LOS |
| Continuous Green T-Intersection | 8 sec. | A | 8 sec. | A |
| Traffic Signal | 11 sec. | B | 15 sec. | B |
| Multi-lane Roundabout | 6 sec. | A | 9 sec. | A |

Table 5 provides a summary of the Year 2045 operations analysis. Results of the traffic operations analysis indicate that all alternatives would continue to operate at acceptable levels of service under Year 2045 volumes and proposed lane configurations. Detailed results can be found in Appendix E.

Table 6. Design Year 2045 Traffic Operations Analysis Results

| Alternative | AM Peak Hour |  | PM Peak Hour |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Overall <br> Delay | LOS | Overall <br> Delay | LOS |
| Continuous Green T-Intersection | 9 sec. | A | 10 sec. | B |
| Traffic Signal | 11 sec. | B | 16 sec. | B |
| Multi-lane Roundabout | 7 sec. | A | 14 sec. | B |

## Crash Analysis

A crash analysis was performed to determine the projected crashes per year for each traffic control alternative for the Opening Day Year 2027 and Year 2045 conditions. Since the existing intersection configuration is similar to a green T-intersection (except today drivers making the southbound-toeastbound left-turn need to yield in the median since there is no acceleration lane) and there is not an identified crash issue today, the existing intersection crash rate was used for the continuous green T-intersection control alternative.

Crash Modification Factors (CMFs) were used to determine predicted crashes for the alternatives. CMFs are estimates of the resulting change in crash rates after a change to an intersection or roadway segment. A CMF of 0.75 indicates that the crash rate after the change is expected to be $75 \%$ of the existing crash rate (i.e., a $25 \%$ reduction in crashes is expected). For this analysis, CMFs were obtained from the CMF Clearinghouse website. This website is funded by the FHWA and provides a searchable database of CMFs from various studies.

For the Traffic Signal, a CMF of 1.04 for all crashes and 1.15 for injury and fatal crashes was assumed. For the roundabout alternative, a CMF of 1.06 for all crashes and 0.37 for injury crashes was assumed. A summary of the crash analysis is shown in Table 7.

Table 7. Crash Analysis Results

| Alternative | Intersection ADT |  | $\qquad$ | Average Crash Rate ${ }^{(1)}$ | Projected Crashes/Year |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Opening Day Year 2027 | Year 2045 |  |  | Opening Day Year 2027 | Forecast <br> Year 2045 |
| Continuous Green T-Intersection | 26,500 | 31,700 | N/A | $0.32{ }^{(2)}$ | 3.1 | 3.7 |
| Traffic Signal |  |  | 1.04 / 1.15 | $0.33{ }^{(3)}$ | 3.2 | 3.8 |
| Multi-lane Roundabout |  |  | 1.06 / 0.37 | $0.34{ }^{(3)}$ | 3.3 | 3.9 |

(1) Per million entering vehicles.
(2) Assumed to match the observed crash rate.
(3) Based on adjusting the observed crash rate with a crash modification factor.

## Alternatives Assessment

## Right of Way Considerations

Sufficient right of way exists; therefore, right of way is not a differentiator between the alternatives.

## Corridor Functionality Considerations

All alternatives are consistent with the corridor vision and can adequately accommodate traffic levels; however, there is risk with the multi-lane roundabout alternative relative to queuing issues between the 1st Avenue/21st Avenue intersection and the US 10/US 75 intersection. From a traffic calming perspective, the multi-lane roundabout slows all traffic down by the nature of its design, which further promotes an urban character connecting the character of the corridor in downtown Moorhead with the character through Dilworth. However, overall average delay per vehicle is less with the continuous green T-intersection compared to the other alternatives.

Further, roundabouts are most appropriate where the traffic flows are balanced on all approaches as roundabouts introduce delay to all movements, essentially treating each movement equally. For the study intersection, over 85 percent of the intersection entering traffic is on U.S. Hwy 10; therefore, a roundabout would cause undue delay to mainline traffic on U.S. Hwy 10. Traffic signals can provide progression along a corridor and can be used to interrupt heavy traffic to allow other traffic, vehicular or pedestrians, to complete their movements. With the green T-intersection there is no delay introduced for eastbound U.S. Hwy 10 traffic but the it still allows traffic the opportunity to easily access the mainline of U.S. Hwy 10 int both directions.

## Pedestrian and Bicycle Considerations

All alternatives adequately accommodate pedestrians and bicycles. With traffic signals (even with the continuous green T-intersection), pedestrian phases can be built into the signal timing to allow for protected pedestrian crossings at the designated crosswalks. Bicycles would cross like vehicles unless there is an adjacent shared-use path. However, conflicts exist between turning vehicles and pedestrians/bikes and crashes that involve vehicles that run red lights are severe. Roundabout control benefits pedestrians and bicycles by:

- Making drivers slow down driving through the intersection.
- Reducing the distance pedestrians and bikes need to cross.
- Raised medians provide a refuge for those crossing.
- Pedestrians and bikes only need to look at one direction of traffic at a time.

While the multi-lane roundabout provides additional conflicts for pedestrians/bikes with vehicles (compared to a single-lane roundabout), vehicles are traveling slow through the roundabout so potential crashes tend to be less severe.

## Conclusions and Recommendations

Based on the results of this intersection control evaluation, and in support of the overall US 10/ US 75 Corridor Study goals with input from study partners and community, converting the intersection to a continuous green T-intersection is recommended for the intersection of U.S. Hwy 10 and U.S. Hwy 75 (North) intersection in Moorhead. The following supports this recommendation:

Currently, eastbound traffic does not have to stop and would continue to not have to stop with the continuous green T-intersection alternative; both the multi-lane roundabout and traffic signal alternatives introduce undue delay to eastbound U.S. Hwy 10 traffic. Future, the green Tintersection minimizes the potential risk for queuing impacts between the 1st Avenue/21st Street and US 10/75 intersections. Since the existing intersection configuration is similar to a green Tintersection (except today drivers making the southbound-to-eastbound left-turn need to yield in the median since there is no acceleration lane) and there is not an identified crash issue today, the green T-intersection configuration would be low-risk from a safety perspective.

As documented in the overall study, with the continuous green-T intersection recommendation at US $10 / 75$, an inspection site in the westbound direction is not feasible. Input from stakeholders indicates a desire to maintain a future inspection site along U.S. Hwy 10. To address this, several alternatives were developed (see Appendix F) that can be further considered as the project develops.

One option uses the City-owned transfer facility property in the southwest quadrant of the 28th Street intersection. This location would require trucks to exit and re-enter U.S. Hwy 10. Further, the City desires to keep this property for potential redevelopment opportunities if other inspection site locations are feasible. A second option also requires trucks to exit and re-enter U.S. Hwy 10 using the northern frontage road between 26th and 28th Streets.

While State Patrol would prefer the inspection site remains near the US 10/75 intersection where travel speeds are low and commercial vehicles can be captured in both directions, an inspection site on both shoulders of US 10 east of Dilworth between the 12th and 60th Street intersections can be accommodated. This would allow for the inspection of trucks that bypass the I-94 weigh station and access US 10 via Hwy 336.

Findings from this ICE will inform MnDOT's 2025-2026 reconstruction of the corridors. As new traffic date becomes available during preliminary and final design, queue storage and turn lane lengths should be confirmed to ensure turn lanes can accommodate projected traffic.

## Appendices

Appendix A: 2013-2017 Crash History
Appendix B: Historical Trends
Appendix C: Opening Day Year 2027 All-way Stop and Traffic Signal Warrants Analysis Year 2045 All-way Stop and Traffic Signal Warrants Analysis

Appendix D: Opening Day Year 2027 Detailed Traffic Operations Analysis
Appendix E: Year 2045 Detailed Traffic Operations Analysis
Appendix F: Options for Maintaining Commercial Vehicle Inspection Site

## Appendix A

## 2013-2017 Crash History

|  | Tratic Cantad |  |  | aоt |  | Failis Tree |  |  |  | ${ }^{\text {Tomas }}$ |  |  |  |  |  |  |  |  |  |  |  |  | Stame | One |  |  | Sok |  | Comed |  |  |  |  | Sol | 为 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dill |  | ${ }_{\text {ctes }}^{\substack{1850}}$ | ${ }^{21,885}$ |  |  |  |  | ${ }^{0.88}$ |  |  |  |  |  |  |  | ${ }_{12}$ | ${ }_{6}^{4}$ |  |  |  |  |  |  | ${ }^{17}$ |  | ${ }^{\circ}$ | ！ |  | ？ | $\stackrel{2}{2}$ | ${ }^{6}$ |  |  |  |
|  |  |  |  |  |  |  | ${ }^{0.28}$ | 0.0 | 0.16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1－94 Bus／Main Ave \＆US Hwy 75／8th St <br> 1－94 Bus／Main Ave \＆10th St | Smaled | ， 1 |  | ${ }^{\frac{2}{2} 5850}$ | ${ }^{0.0}$ |  | ${ }^{0.5}$ |  | ${ }^{0.70}$ | ${ }^{\frac{28}{28}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{21}{1}$ |  |  |  |  |  |
|  | Semamed | $\xrightarrow{12000}$ |  |  | ${ }^{0.52}$ |  | 0，00 | ${ }^{0.9}$ | ${ }^{0.96}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | （itan | ${ }_{\text {inems }}^{12.205}$ | （0，52 | Sols | ${ }_{\text {ose }}^{0.05}$ | ${ }_{0}^{0.98}$ | ${ }_{\text {ofs }}^{0.5}$ | $\xrightarrow{14}$ |  |  |  |  | ${ }_{2}$ |  | ${ }^{3}$ |  |  |  |  |  |  |  | ${ }^{\frac{10}{6}}$ |  | ， |  |  | $\stackrel{6}{8}$ | ， |  |  |  |  |
| Us | Sombed | $\xrightarrow[\substack{\text { Iomo } \\ 20200}]{ }$ |  |  |  |  | ${ }_{\text {or }}^{0.38}$ |  | ${ }_{\text {or }}^{0.97}$ | ${ }^{\frac{36}{14}}$ |  |  |  |  | $\stackrel{2}{2}$ |  | ${ }_{\text {ce }}^{20}$ |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{28}$ |  |  |  |  |  |
|  |  |  |  | ${ }^{\text {20．000 }}$ | ${ }^{0.1}$ |  | ${ }^{0.18}$ |  |  | $\stackrel{16}{6}$ | ${ }^{0}$ |  |  |  | ${ }^{3}$ |  | ${ }^{2}$ |  | － |  |  |  |  |  |  | O | 1 |  |  | $\stackrel{4}{4}$ |  |  |  |  |  |
| Sishlios isisi |  | ${ }_{\text {anden }}^{\substack{\text { anam }}}$ | （1aty | ${ }_{\text {a }}^{\text {andid }}$ | 0.18 | Uneant huso | ${ }_{0} 0.30$ |  | ${ }^{0.45}$ | ＂ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Sombed |  |  |  | ${ }^{0.0}$ |  |  | $\stackrel{106}{1068}$ | ${ }^{\text {O．37 }}$ | ${ }_{\substack{10 \\ 0}}^{\substack{0}}$ |  |  |  |  | $\stackrel{1}{1}$ |  | ${ }_{5}$ | ${ }_{2}^{2}$ |  |  |  |  |  |  | $\stackrel{9}{9}$ |  | $\bigcirc$ |  |  | ${ }_{4}$ |  | ， |  |  |  |
|  |  | （1800 |  |  | ${ }_{\text {coib }}^{0.1}$ |  |  | ${ }_{\text {Os，}}^{0.39}$ | ${ }_{\text {a }}^{\substack{\text { it } \\ 0.7}}$ |  |  |  |  |  | $\stackrel{\circ}{\circ}$ |  | $\stackrel{16}{16}$ |  |  |  |  |  |  |  | ${ }^{12}$ |  | ${ }_{4}^{4}$ |  |  | ${ }^{11}$ |  | ， |  |  |  |
|  |  |  |  |  |  | Unam rusto |  |  | ${ }^{030}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | ${ }_{\substack{150 \\ 800}}^{\text {cos }}$ |  |  | Soubunhtuvil low speed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{2}{2}$ |  |  |  | ${ }_{4}$ | ${ }^{\text {}}$ |  |  |  |
|  | Stin | ${ }^{\text {1240e }}$ |  |  | ${ }_{\text {o }}^{0.18}$ | Unemen misiom |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{1}{\square}$ |  |  |  |  |
|  | ，sinmesod |  |  |  |  |  |  | ${ }_{\text {leat }}^{\substack{1,04 \\ 0.5}}$ | ${ }_{\text {a }}^{0.11}$ | ${ }^{\frac{22}{3}}$ | － |  |  |  | $\stackrel{2}{\circ}$ | $\stackrel{5}{1}$ | ${ }_{5}^{15}$ | ${ }_{1}^{12}$ |  |  |  |  |  |  | $\stackrel{19}{3}$ | $\bigcirc$ | ${ }^{3}$ | ： | $\bigcirc$ | ${ }_{2}^{11}$ |  | ${ }^{10}$ |  |  | $\stackrel{22}{3}$ |
|  |  | （19200 |  | $\underbrace{\frac{2020}{20.10}}$ | ${ }_{\text {a }}^{0.18}$ | Usam his bop |  | ${ }_{\text {cose }}^{0.98}$ | ${ }_{\text {cose }}^{\substack{0.00 \\ 0.0}}$ |  |  |  |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{0}{0}$ |  |  | ， | $\stackrel{0}{0}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{2}$ |  | ${ }_{6} 6$ |  |  |  |  |  |  |  |  |  |  |  |  |  | \％os | ${ }^{2 ⿰ ⿺ 乚 一 匕 ⿱ ㇒ 日 勺}$ |  |  |  |




Appendix B Historical Trends

1 US 10 (Main Avenue) Bridge
200920600

201120600
2013 20200 0.32\%
201522100
201720500

2 US 10 (Main Avenue) 5th Street to 6th Street
200916300
$2011 \quad 17000$ 0.45\%
201316600

3 US 10/75 (Center Avenue) 8th Street to 11th 200910900

201110500
$2013-9400$-3.22\%
20159300
20178700

4 US 10/75 (Center Avenue) 11th Street to 1st
200915200

201111800
$2013-15500-4.95 \%$
201510500
201710600

5 US 10 (Center Avenue) 1st Avenue/21st Street to 34th Street
200921500

201121300
$2013-22000-0.37 \%$
201522000
201720400
6 US 75 (8th Street) 2nd Avenue to 3rd Avenue
200916300
$2011 \quad 17100$ 0.60\%
201316700

7 US 75 (8th Street) 5th Avenue to 6th Avenue
200915300
$2011 \quad 16600$ 3.02\%
201317400

8 US 75 (8th Street) 10th Avenue to 22nd Avenue
200918300

201119700
201320300
201519700

Average Growth Rate $-\mathbf{0 . 3 7 \%}$

## Appendix C

Opening Day Year 2027 and Year 2045 All-way Stop and Traffic Signal Warrants Analysis

WARRANTS ANALYSIS
U.S. Hwy 10/U.S. Hwy 75 (North)

US Hwy 10/US Hwy 75 Corridor Study Moorhead, MN


U.S. Hwy 10/U.S. Hwy 75 (North)

US Hwy 10/US Hwy 75 Corridor Study Moorhead, MN

U.S. Hwy 10/U.S. Hwy 75 (North)

US Hwy 10/US Hwy 75 Corridor Study
Moorhead, MN


WARRANTS ANALYSIS
U.S. Hwy 10/U.S. Hwy 75 (North)

US Hwy 10/US Hwy 75 Corridor Study
Moorhead, MN

|  | Location: Moorhead, MN | M.Knight |  | Speed (mph) | Lanes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date: 12/30/2019 |  |  | 45 | 2 or more | Major Approach 1: | Eastbound U.S. Hwy 10 |
|  | Analysis Prepared By: |  |  | 45 | 2 or more | Major Approach 3: | Westbound U.S. Hwy 10 |
|  | Population Less than 10,000: Seventy Percent Factor Used: |  | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | 45 | 1 | Minor Approach 2: <br> Minor Approach 4: | Southbound U.S. Hwy 75 |


U.S. Hwy 10/U.S. Hwy 75 (North)

US Hwy 10/US Hwy 75 Corridor Study Moorhead, MN

U.S. Hwy 10/U.S. Hwy 75 (North)

US Hwy 10/US Hwy 75 Corridor Study
Moorhead, MN


## Appendix D

## Opening Day Year 2027 Detailed Traffic Operations Analysis

## 2027 AM No Build

US 10/US 75 VISSIM Analysis
MOE Results


| Approach | Movement | Volume (vph) | Average Queue <br> (ft) | Maximum Queue (ft) | Movement Delay (sec/veh) | $\begin{aligned} & \text { Movement } \\ & \text { LOS } \end{aligned}$ | $\begin{gathered} \hline \text { Approach } \\ \text { Delay } \\ \text { (sec/veh) } \\ \hline \end{gathered}$ | Approach LOS | Overall Delay (sec/veh) | Overall LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound | Left | 55 | 18 | 98 | 46.8 | D | 17.4 | B | 8.3 | A |
|  | Right | 239 | 34 | 128 | 10.6 | B |  |  |  |  |
| Eastbound | Left | 114 | 21 | 109 | 40.8 | D | 9.7 | A |  |  |
|  | Thru | 380 | 0 | 0 | 0.4 | A |  |  |  |  |
| Westbound | Thru | 982 | 12 | 166 | 5.4 | A | 5.1 | A |  |  |
|  | Right | 72 | 0 | 9 | 1.1 | A |  |  |  |  |

## 2027 No Build PM

US 10/US 75 VISSIM Analysis
MOE Results


110: Center Ave/Center Ave (TH 10) Performance by approach

| Approach | EB | WB | SB | All |
| :--- | ---: | ---: | ---: | ---: |
| Denied Del/Veh (s) | 0.0 | 0.0 | 0.2 | 0.0 |
| Total Del/Veh (s) | 12.4 | 9.2 | 12.9 | 10.7 |

Intersection: 110: Center Ave/Center Ave (TH 10)

| Movement | EB | EB | EB | EB | WB | WB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | L | T | T | T | T | L | R |
| Maximum Queue (ft) | 53 | 72 | 32 | 63 | 160 | 165 | 63 | 107 |
| Average Queue (ft) | 24 | 51 | 14 | 29 | 98 | 107 | 41 | 65 |
| 95th Queue (ft) | 66 | 80 | 45 | 67 | 177 | 190 | 80 | 121 |
| Link Distance (ft) |  |  | 691 | 691 | 329 | 329 | 744 | 744 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  | 175 |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 175 |  |  |  |  |  |  |  |

110: Center Ave/Center Ave (TH 10) Performance by approach

| Approach | EB | WB | SB | All |
| :--- | ---: | ---: | ---: | ---: |
| Denied Del/Veh (s) | 0.0 | 0.0 | 0.3 | 0.0 |
| Total Del/Veh (s) | 16.6 | 8.8 | 20.7 | 14.9 |

Intersection: 110: Center Ave/Center Ave (TH 10)

| Movement | EB | EB | EB | EB | WB | WB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | L | T | T | T | T | L | R |
| Maximum Queue (ft) | 141 | 159 | 221 | 224 | 208 | 200 | 150 | 166 |
| Average Queue (ft) | 68 | 90 | 90 | 94 | 98 | 82 | 65 | 75 |
| 95th Queue (ft) | 119 | 138 | 179 | 187 | 183 | 159 | 121 | 135 |
| Link Distance (ft) |  |  | 700 | 700 | 321 | 321 | 748 | 748 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  | 175 |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 175 | 175 | 0 |  |  |  |  |  |
| Storage Blk Time (\%) | 0 | 0 | 0 |  |  |  |  |  |
| Queuing Penalty (veh) | 0 | 0 | 1 |  |  |  |  |  |

## Operational Data

## Main Geometry (ft)

Approach and Entry Geometry

| Leg | Leg Names | Approach <br> Bearing <br> (deg) | Grade <br> Separation <br> $\mathbf{G}$ | Half Width <br> $\mathbf{V}$ | Approach <br> Lanes <br> $\mathbf{n}$ | Entry <br> Width <br> $\mathbf{E}$ | Entry <br> Lanes <br> $\mathbf{n}$ | Flare <br> Length <br> $\mathbf{L}^{\prime}$ | Entry <br> Radius <br> $\mathbf{R}$ | Entry <br> Angle <br> Phi |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SB US 75 | 0 | 0 | 12.00 | 1 | 14.00 | 1 | 35.00 | 100.00 | 40.00 |
| 2 | EB US 75/US | 90 | 0 | 24.00 | 2 | 28.00 | 2 | 35.00 | 100.00 | 40.00 |
| 10 WB US 10 | 270 | 0 | 24.00 | 2 | 28.00 | 2 | 35.00 | 100.00 | 40.00 |  |

## Circulating and Exit Geometry

| Leg | Leg Names | Inscribed <br> Diameter <br> $\mathbf{D}$ | Circulating <br> Width <br> C | Circulating <br> Lanes <br> nc | Exit <br> Width <br> Ex | Exit <br> Lanes <br> nex | Exit <br> Half Width <br> Vx | Exit Half <br> Width Lanes <br> nvx |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SB US 75 | 180.00 | 32.00 | 2 | 18.00 | 1 | 24.00 | 2 |
| 2 | EB US 75/US | 180.00 | 20.00 | 1 | 30.00 | 2 | 24.00 | 2 |
| 10 WB US 10 | 180.00 | 20.00 | 1 | 30.00 | 2 | 24.00 | 2 |  |

## Bypass Geometry

Bypass Approach Geometry (ft)

| Leg | Leg Names | Bypass <br> Type | Bypass <br> Flows | V | nv | Vb | nvb | Vt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SB US 75 | Yield | 245 | 12 | 1 | 12 | 1 | 24 |

Bypass Entry and Exit Geometry (ft)

| Leg | Leg Names | Eb | neb | Lb | Lt | Rb | Phib | Leg | Leg Names | Exit Lanes <br> nex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SB US 75 | 14 | 1 | 35 | 35 | 100.0000 <br> 992 | 40 | 2 | EB US 75/US 10 | 2 |

## Operational Results

## 2027 AM Peak - 60 minutes

Delays, Queues and Level of Service

| Leg | Leg Names | Bypass | Average Delay (sec) |  |  | $95 \%$ Queue (veh) |  | Level of Service |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Entry | Bypass | Leg | Entry | Bypass | Entry | Bypass |  |  |  |
| Leg |  |  |  |  |  |  |  |  |  |  |
| 1 | SB US 75 | Yield | 5.21 | 8.29 | 7.68 | 0.23 | 1.24 | A | A | A |
| 2 | EB US 75/US 10 | None | 4.69 |  | 4.69 | 1.08 |  | A | A |  |
| 3 | WB US 10 | None | 6.52 |  | 6.52 | 2.83 |  | A | A |  |

## Operational Data

## Main Geometry (ft)

Approach and Entry Geometry

| Leg | Leg Names | Approach <br> Bearing <br> (deg) | Grade <br> Separation <br> $\mathbf{G}$ | Half Width <br> $\mathbf{V}$ | Approach <br> Lanes <br> $\mathbf{n}$ | Entry <br> Width <br> $\mathbf{E}$ | Entry <br> Lanes <br> $\mathbf{n}$ | Flare <br> Length <br> $\mathbf{L}^{\prime}$ | Entry <br> Radius <br> $\mathbf{R}$ | Entry <br> Angle <br> Phi |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SB US 75 | 0 | 0 | 12.00 | 1 | 14.00 | 1 | 35.00 | 100.00 | 40.00 |
| 2 | EB US 75/US | 90 | 0 | 24.00 | 2 | 28.00 | 2 | 35.00 | 100.00 | 40.00 |
| 10 WB US 10 | 270 | 0 | 24.00 | 2 | 28.00 | 2 | 35.00 | 100.00 | 40.00 |  |

## Circulating and Exit Geometry

| Leg | Leg Names | Inscribed <br> Diameter <br> $\mathbf{D}$ | Circulating <br> Width <br> C | Circulating <br> Lanes <br> nc | Exit <br> Width <br> Ex | Exit <br> Lanes <br> nex | Exit <br> Half Width <br> Vx | Exit Half <br> Width Lanes <br> nvx |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SB US 75 | 180.00 | 32.00 | 2 | 18.00 | 1 | 24.00 | 2 |
| 2 | EB US 75/US | 180.00 | 20.00 | 1 | 30.00 | 2 | 24.00 | 2 |
| 10 WB US 10 | 180.00 | 20.00 | 1 | 30.00 | 2 | 24.00 | 2 |  |

## Bypass Geometry

Bypass Approach Geometry (ft)

| Leg | Leg Names | Bypass <br> Type | Bypass <br> Flows | V | nv | Vb | nvb | Vt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SB US 75 | Yield | 305 | 12 | 1 | 12 | 1 | 24 |

Bypass Entry and Exit Geometry (ft)

| Leg | Leg Names | Eb | neb | Lb | Lt | Rb | Phib | Leg | Leg Names | Exit Lanes <br> nex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SB US 75 | 14 | 1 | 35 | 35 | 100.0001 <br> 056 | 40 | 2 | EB US 75/US 10 | 2 |

## Operational Results

## 2027 PM Peak - 60 minutes

Delays, Queues and Level of Service

| Leg | Leg Names |  | Bypass <br> Type | Average Delay (sec) |  | $95 \%$ Queue (veh) |  | Level of Service |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Entry |  | Leg | Entry | Bypass | Entry | Bypass | Leg |  |
| 1 | SB US 75 | Yield | 5.26 | 8.52 | 7.80 | 0.30 | 1.53 | A | A | A |
| 2 | EB US 75/US 10 | None | 11.18 |  | 11.18 | 9.54 |  | B | B |  |
| 3 | WB US 10 | None | 6.18 |  | 6.18 | 2.24 |  | A | A |  |

## Appendix E

Year 2045 Detailed Traffic Operations Analysis

## 2045 AM Build - Split Phase Removed US 10/US 75 VISSIM Analysis <br> MOE Results

| Center Ave/1st Ave/21st St |
| :--- |
| S |


| Approach | Movement | Volume (vph) | Average Queue <br> (ft) | Maximum Queue <br> (ft) | Movement Delay (sec/veh) | $\begin{aligned} & \text { Movement } \\ & \text { LOS } \end{aligned}$ | Approach Delay (sec/veh) | Approach LOS | Overall Delay (sec/veh) | Overall LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Northbound | Left | 72 | 15 | 125 | 41 | D | 27.5 | C | 27.2 |  |
|  | Thru | 476 | 55 | 238 | 32.4 | C |  |  |  | C |
|  | Right | 246 | 15 | 148 | 13.9 | B |  |  |  |  |
| Southbound | Left | 120 | 20 | 91 | 38.2 | D | 35.8 | D |  |  |
|  | Thru | 239 | 53 | 230 | 35.0 | D |  |  |  |  |
|  | Right | 8 | 50 | 231 | 23.3 | C |  |  |  |  |
| Eastbound | Left | 15 | 4 | 34 | 47.6 | D | 23.6 | C |  |  |
|  | Thru | 226 | 19 | 116 | 25.4 | C |  |  |  |  |
|  | Right | 49 | 3 | 93 | 7.9 | A |  |  |  |  |
| Westbound | Left | 464 | 61 | 216 | 41.0 | D | 25.5 | C |  |  |
|  | Thru | 545 | 27 | 173 | 16.4 | B |  |  |  |  |
|  | Right | 428 | 44 | 297 | 20.4 | C |  |  |  |  |

Center Ave/TH 75
Roundabout

| Approach | Movement | Volume (vph) | Average Queue <br> (ft) | Maximum Queue <br> (ft) | Movement Delay (sec/veh) | Movement LOS | $\begin{gathered} \hline \text { Approach } \\ \text { Delay } \\ \text { (sec/veh) } \\ \hline \end{gathered}$ | Approach LOS | Overall Delay (sec/veh) | Overall LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound | Left | 67 | 17 | 152 | 7.5 | A | 10.7 | B | 5.7 | A |
|  | Right | 286 | 17 | 152 | 11.5 | B |  |  |  |  |
| Eastbound | Left | 138 | 0 | 24 | 2.6 | A | 2.0 | A |  |  |
|  | Thru | 453 | 0 | 24 | 1.8 | A |  |  |  |  |
| Westbound | Thru | 1,153 | 5 | 178 | 6.1 | A | 6.1 | A |  |  |
|  | Right | 84 | 4 | 178 | 5.9 | A |  |  |  |  |

## 2045 Build PM - Split Phase Removed US 10/US 75 VISSIM Analysis <br> MOE Results



Center Ave/TH 75 Roundabout

| Approach | Movement | Volume (vph) | Average Queue (ft) | Maximum Queue (ft) | Movement Delay (sec/veh) | $\begin{aligned} & \text { Movement } \\ & \text { LOS } \end{aligned}$ | Approach Delay (sec/veh) | Approach LOS | Overall Delay (sec/veh) | Overall LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound | Left | 102 | 13 | 147 | 5.3 | A | 7.2 | A | 7.1 | A |
|  | Right | 358 | 13 | 147 | 7.8 | A |  |  |  |  |
| Eastbound | Left | 284 | 7 | 223 | 7.4 | A | 6.4 | A |  |  |
|  | Thru | 1,588 | 7 | 223 | 6.2 | A |  |  |  |  |
| Westbound | Thru | 881 | 5 | 151 | 8.5 | A | 8.4 | A |  |  |
|  | Right | 104 | 5 | 150 | 7.2 | A |  |  |  |  |

## 2045 AM No Build

US 10/US 75 VISSIM Analysis
MOE Results
Center Ave/TH 75

| Approach | Movement | Volume <br> (vph) | Average Queue (ft) | Maximum Queue <br> (ft) | Movement Delay (sec/veh) | Movement LOS | $\begin{gathered} \hline \text { Approach } \\ \text { Delay } \\ \text { (sec/veh) } \\ \hline \end{gathered}$ | Approach LOS | Overall Delay (sec/veh) | Overall LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southbound | Left | 68 | 23 | 124 | 45.8 | D | 18.4 | B | 8.8 | A |
|  | Right | 285 | 40 | 155 | 11.9 | B |  |  |  |  |
| Eastbound | Left | 138 | 24 | 137 | 38.8 | D | 9.3 | A |  |  |
|  | Thru | 453 | 0 | 0 | 0.4 | A |  |  |  |  |
| Westbound | Thru | 1,166 | 17 | 201 | 6.1 | A | 5.8 | A |  |  |
|  | Right | 86 | 0 | 10 | 1.1 | A |  |  |  |  |

## 2040 No Build

US 10/US 75 VISSIM Analysis
MOE Results

| Center Ave/TH 75 |  |  |  |  |  |  |  |  |  | Signal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach | Movement | Volume (vph) | Average Queue <br> (ft) | Maximum Queue <br> (ft) | Movement Delay (sec/veh) | Movement LOS | Approach Delay (sec/veh) | Approach LOS | Overall Delay (sec/veh) | Overall LOS |
| Southbound | Left | 103 | 36 | 168 | 53.2 | D | 20.9 | C | 9.7 | A |
|  | Right | 358 | 56 | 198 | 11.5 | B |  |  |  |  |
| Eastbound | Left | 276 | 45 | 207 | 39.1 | D | 6.3 | A |  |  |
|  | Thru | 1,587 | 0 | 0 | 0.6 | A |  |  |  |  |
| Westbound | Thru | 889 | 19 | 203 | 11.7 | B | 11.0 | B |  |  |
|  | Right | 106 | 0 | 17 | 5.3 | A |  |  |  |  |

110: Center Ave/Center Ave (TH 10) Performance by approach

| Approach | EB | WB | SB | All |
| :--- | ---: | ---: | ---: | ---: |
| Denied Del/Veh (s) | 0.0 | 0.0 | 0.3 | 0.0 |
| Total Del/Veh (s) | 12.3 | 8.4 | 19.0 | 11.3 |

Intersection: 110: Center Ave/Center Ave (TH 10)

| Movement | EB | EB | EB | EB | WB | WB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | L | T | T | T | T | L | R |
| Maximum Queue (ft) | 54 | 84 | 84 | 94 | 178 | 178 | 66 | 136 |
| Average Queue (ft) | 31 | 59 | 45 | 63 | 127 | 124 | 38 | 100 |
| 95th Queue (ft) | 66 | 87 | 99 | 110 | 213 | 213 | 72 | 164 |
| Link Distance (ft) |  |  | 691 | 691 | 329 | 329 | 744 | 744 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  | 175 | 175 |  |  |  |  |  |
| Storage Bay Dist (ft) | 175 |  |  |  |  |  |  |  |
| Storage Blk Time (\%) |  |  |  |  |  |  |  |  |

110: Center Ave/Center Ave (TH 10) Performance by approach

| Approach | EB | WB | SB | All |
| :--- | ---: | ---: | ---: | ---: |
| Denied Del/Veh (s) | 0.0 | 0.0 | 0.3 | 0.0 |
| Total Del/Veh (s) | 17.8 | 9.7 | 24.5 | 16.4 |

Intersection: 110: Center Ave/Center Ave (TH 10)

| Movement | EB | EB | EB | EB | WB | WB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | L | T | T | T | T | L | $R$ |
| Maximum Queue (ft) | 170 | 174 | 238 | 107 | 238 | 200 | 172 | 234 |
| Average Queue (ft) | 84 | 103 | 45 | 47 | 116 | 86 | 79 | 112 |
| 95th Queue (ft) | 142 | 156 | 110 | 95 | 208 | 163 | 142 | 199 |
| Link Distance (ft) |  |  | 700 | 700 | 321 | 321 | 748 | 748 |
| Upstream Blk Time (\%) |  |  | 0 |  |  |  |  |  |
| Queuing Penalty (veh) |  |  | 0 |  |  |  |  |  |
| Storage Bay Dist (ft) | 175 | 175 |  | 0 |  |  |  |  |
| Storage Blk Time (\%) | 0 | 1 | 0 |  |  |  |  |  |
| Queuing Penalty (veh) | 1 | 4 | 0 |  |  |  |  |  |

## Appendix F Options for Maintaining Commercial Vehicle Inspection Site



SRE Potential Truck Inspection Site East of Dilworth


SRE Existing Truck Inspection Site \& Proposed City Transfer Site


SRE $\frac{\text { Potential Eastbound Inspection Site with Green Tee Intersection }}{\text { US } 10 / \text { US } 75 \text { Corridor Study }}$



US 10 / US 75 Corridor Study
Moorhead, Minnesota


SRE Potential Pull Off Truck Inspection Site

